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The BSD conjecture:

Why is it useful?



Fundamental problems

Let A be an abelian variety over Q.

Problem 1

Compute r := rk A(Q), the algebraic rank.

For every n > 1, there is an n-descent exact sequence

0 → A(Q)/n → Seln(A/Q) → X(A/Q)[n] → 0

with the n-Selmer group Seln(A/Q) finite (and computable in principle).

Problem 2

Compute X(A/Q), the Shafarevich–Tate group.
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Statement of the BSD conjecture

Birch–Swinnerton-Dyer (rank) conjecture

r = ran
:= ords=1 L(A, s)

For A = E an elliptic curve:

▶ ran well-defined by modularity of E/Q.

▶ Yields “day-night algorithm” to compute r and hence E(Q).
▶ Formulated based on computations in 1965.

▶ Proven if ran ≤ 1.

strong BSD conjecture

#X(A/Q) = #X(A/Q)an
:=

#A(Q)tors · #A∨(Q)tors∏
p cp

· L∗(A, 1)
ΩA RegA

Compare with the analytic class number formula!

2 / 17



Statement of the BSD conjecture

Birch–Swinnerton-Dyer (rank) conjecture

r = ran
:= ords=1 L(A, s)

For A = E an elliptic curve:

▶ ran well-defined by modularity of E/Q.

▶ Yields “day-night algorithm” to compute r and hence E(Q).
▶ Formulated based on computations in 1965.

▶ Proven if ran ≤ 1.

strong BSD conjecture

#X(A/Q) = #X(A/Q)an
:=

#A(Q)tors · #A∨(Q)tors∏
p cp

· L∗(A, 1)
ΩA RegA

Compare with the analytic class number formula!

2 / 17



What are applications of the strong BSD conjecture?

Problem

Let C/Q be a curve of genus 1. Decide: C(Q) = ∅? #C(Q) = ∞?

▶ Compute elliptic curve E/Q such that [C] ∈ X(E/Q).
▶ If one can decide C(Q) ≠ ∅, one can decide #C(Q) = ∞

by deciding L(E, 1) = 0 (BSD rank conjecture).

▶ Compute #X(E/Q) using strong BSD.

▶ Enumerate representatives of X(E/Q).
▶ Use the perfect Cassels–Tate pairing

⟨·, ·⟩ : X(E/Q) ×X(E/Q) → Q/Z

to decide existence of [D] ∈ X(E/Q) with ⟨[C], [D]⟩ ≠ 0.
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The BSD conjecture:

What is known?



What is already known about (strong) BSD?

Let A be a RM abelian variety over Q with associated newform f .
▶ Assume that ords=1 L(f , s) ∈ {0, 1} (hence ran ∈ {0, dimA}).
▶ This implies by combining the Gross–Zagier formula with

the Heegner point Euler system of Kolyvagin–Logachëv:

r = ran , (BSD rank conjecture)

#X(A/Q) < ∞,

#X(A/Q)an ∈ Q>0.

▶ Unknown: #X(A/Q) ?

= #X(A/Q)an (strong BSD)
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In which cases has strong BSD been verified?

▶ For elliptic curves with ran ≤ 1:

Strong BSD verified exactly for levels N < 5000 combining work of

Grigorov–Jorza–Patrikis–Stein–Tarniţǎ (2009), Miller (2011),

Miller–Stoll (2013, isogeny descent),

Creutz–Miller (2012, second isogeny descent),

Lawson–Wuthrich (2016, use of p-adic L-functions).

▶ For RM abelian varieties of dimension > 1:

Flynn–Leprévost–Schaefer–Stein–Stoll–Wetherell (2001):

BSD for some Jacobians of dimension 2 numerically.

van Bommel (2019): BSD for some hyperelliptic Jacobians

numerically up to squares.

Skinner–Urban (2014): GL2 Iwasawa Main Conjecture (IMC)

for primes p of good ordinary reduction and 𝜌p irreducible.

Skinner (2016): GL2 IMC

for primes p of bad multiplicative reduction and 𝜌p irreducible.

Castella–Çiperiani–Skinner–Sprung (2019, preprint):

vp(#X(A/Q)) = vp(#X(A/Q)an)
if N is square-free, p ∤ N, and 𝜌p irreducible.
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What are our new results

in dimension 2?



How to bound #X(A/Q)?

There are two reasons why X(A) could be infinite:

▶ “horizonal”: X(A)[p] ≠ 0 for infinitely many p.

▶ “vertical”: X(A)[p∞] � F ⊕ (Qp/Zp)n infinite for one p.

Solution to the “horizontal” problem:

Theorem (K.): explicit Euler system of Kolyvagin–Logachëv

Let A be a RM abelian variety over Q. Denote 𝒪 := EndQ(A).
One has X(A/Q)[𝔭] = 0 for all 𝔭 with

▶ 𝜌𝔭 : Gal(Q|Q) → AutF𝔭
(A[𝔭](Q)) irreducible and

▶ 𝔭 ∤ 2 · c · gcdK(IK) with Heegner indices IK and

the Tamagawa product c (both can be refined to 𝒪-ideals).

▶ These 𝔭 are explicitly computable and cover almost all 𝔭.

▶ In fact, 𝔭2 ord𝔭 IKX(A/Q)[𝔭∞] = 0 if 𝜌𝔭 irreducible and 𝔭 ∤ 2c.
▶ We also have an explicit bound on X(A/Q)[𝔭∞] for all 𝔭.
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What are the main obstacles in dimension > 1?

Problems when dim A > 1 (necessary input for Euler system)

▶ We don’t have an analog of Mazur’s classification

of rational isogenies of prime degree for all A:

moduli spaces have dimension > 1.

▶ We have to compute Heegner points.

We solve the problems for concretely given A = Jac(C).
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How to compute the remaining X(A/Q)[𝔭∞]?

Two tools:

▶ Perform a 𝔭n
-descent to compute Sel𝔭n(A/Q).

Works very well if 𝜌𝔭n is reducible.

Works for general 𝔭n
in principle, but:

Infeasible if 𝜌𝔭n has large image,

e.g., #𝒪/𝔭n > 7 and 𝜌𝔭n irreducible, even assuming GRH.

▶ Compute the 𝔭-adic L-function and use the GL2 IMC.

Can be computed very efficiently with overconvergent modular

symbols using the Pollack–Stevens–Greenberg algorithm.

Requires 𝜌𝔭 to be irreducible.

(But: work in progress joint with Castella)

Unclear for good non-ordinary and especially

bad non-multiplicative reduction.

Requires the computation of the 𝔭-adic regulator if ran > 0 or

if the reduction is split multiplicative.

(work in progress by Kaya–Müller–van der Put)
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How do we verify the conjecture?

𝜌𝔭

L′(f 𝛼/K, 1)

𝒪yK

ℒ𝔭(f , T) Sel𝔭

𝒪yK

IK H
1(Gi ,A[𝔭i])

#X(A)an

[KL]

BSD(A)

X(A)[𝔭]
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Sketch of proofs



Almost all 𝜌𝔭 are irreducible

Theorem (K.)

Assume vp(N) ≤ 1.

If 𝜌𝔭 is reducible, 𝜌ss

𝔭 � 𝜀 ⊕ 𝜀−1𝜒p with 𝜀 of conductor d with d2 | N.

Hence: If 𝜌𝔭 is reducible as an F𝔭-representation, then

an eigenvalue of 𝜌𝔭(Frobℓ ) has order dividing ord(ℓ ∈ (Z/d)×).

Hence:

for d maximal with d2 | N.
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Computing (a multiple of) the Heegner index IK

Let J = Jac(X). There is an isogeny 𝜋 : J0(N)/AnnT(f ) =: Af → J.
Let K be a Heegner field for J.

Af (K) Af (C) Cg/Λf

J(K) J(C) Cg/Λ

∼

𝜋

∼

1. Complex approximation of yK ∈ Cg/Λf using integrals.

2. Compute the image of yK under the isogeny 𝜋 : Cg/Λf → Cg/Λ.

3. Invert the Abel–Jacobi map J(C) ∼−→ Cg/Λ using theta functions.

4. Approximate the Mumford representation in J(K).
5. Prove correctness using ĥ(yK) from Gross–Zagier (reconstruct ĥ𝜗 on

J(K) from ĥ𝜄 on Af with respect to isogeny 𝜄 : A∨
f → Af ).

Note that we use X hyperelliptic in steps 3 and 4.
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How to compute #X(A/Q)an exactly?

▶ Compute
L(f ,1)
Ω+

f
∈ Q(f ) exactly

using modular symbols and Balakrishnan–Müller–Stein

and van Bommel’s code to compute ΩA.

▶ If L(A, 1) ≠ 0, this gives #X(A/Q)an ∈ Q>0 exactly.

▶ If L(A, 1) = 0:

Choose a Heegner field K and compute
L(fK ,1)

RegA/K ΩA/K
∈ Q>0 exactly

using Gross–Zagier, and hence compute #X(A/K)an ∈ Q>0.

Compute #X(AK/Q)an ∈ Q>0 exactly.

Use #X(A/K)an = #X(A/Q)an · #X(AK/Q)an up to powers of 2

that can be explicitly bounded to compute #X(A/Q)an ∈ Q>0 exactly.
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Examples in dimension 2



Can you give an example? A = Jac(X0(39)/w13)

▶ 𝒪 = Z
[√

2

]
▶ r = ran = 0

▶ #X(A/Q)an = 1

▶ A(Q) = A(Q)tors � Z/2 × Z/(2 · 7)
▶ 𝜌𝔭 is reducible exactly for 𝔭 = (

√
2) and exactly one 𝔭𝔭̄ = 7.

▶ c = 7

▶ [KL] with IQ(
√
−23) = 7 gives #X(A/Q)[𝔭] = 0 for 𝔭 ∤ (

√
2), 7.

▶ Sel2(A/Q) � (Z/2)2 � A(Q)/2 gives X(A/Q)[2] = 0.

▶ 𝜌𝔭 is reducible with

0 → Z/7 → A[𝔭] → 𝜇7 → 1

non-split exact, and Sel𝔭(A/Q) � Z/7 � A(Q)[7] by descent.

Hence X(A/Q)[𝔭] = 0.

▶ The 𝔭̄-adic L-function has constant term a unit in 𝒪𝔭̄ ≃ Z7, hence

the integral GL2 IMC shows Sel𝔭̄(A/Q) = 0 since 𝜌𝔭̄ is irreducible.
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All Atkin-Lehner quotients of genus 2 of our type (I)

X r 𝒪 #Xan 𝜌𝔭 red. c (D, ID) #X

X0(23) 0

√
5 1 111 11 (−7, 11) 11

0

X0(29) 0

√
2 1 71 7 (−7, 7) 7

0

X0(31) 0

√
5 1

√
5 5 (−11, 5) 5

0

X0(35)/w7 0

√
17 1 21 1 (−19, 1) 1

X0(39)/w13 0

√
2 1

√
2, 71 7 (−23, 7) 7

0

X0(67)+ 2

√
5 1 1 (−7, 1) 1

X0(73)+ 2

√
5 1 1 (−19, 1) 1

X0(85)∗ 2

√
2 1

√
2 1 (−19, 1) 1

X0(87)/w29 0

√
5 1

√
5 5 (−23, 5) 5

0

X0(93)∗ 2

√
5 1 1 (−11, 1) 1

X0(103)+ 2

√
5 1 1 (−11, 1) 1

X0(107)+ 2

√
5 1 1 (−7, 1) 1

X0(115)∗ 2

√
5 1 1 (−11, 1) 1

X0(125)+ 2

√
5 1

√
5 1 (−11, 1) 5

0
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All Atkin-Lehner quotients of genus 2 of our type (II)

X r 𝒪 #Xan 𝜌𝔭 red. c (D, ID) #X

X0(133)∗ 2

√
5 1 1 (−31, 1) 1

X0(147)∗ 2

√
2 1

√
2, 71 1 (−47, 1) 7

0

X0(161)∗ 2

√
5 1 1 (−19, 1) 1

X0(165)∗ 2

√
2 1

√
2 1 (−131, 1) 1

X0(167)+ 2

√
5 1 1 (−15, 1) 1

X0(177)∗ 2

√
5 1 1 (−11, 1) 1

X0(191)+ 2

√
5 1 1 (−7, 1) 1

X0(205)∗ 2

√
5 1 1 (−31, 1) 1

X0(209)∗ 2

√
2 1 1 (−51, 1) 1

X0(213)∗ 2

√
5 1 1 (−11, 1) 1

X0(221)∗ 2

√
5 1 1 (−35, 1) 1

X0(287)∗ 2

√
5 1 1 (−31, 1) 1

X0(299)∗ 2

√
5 1 1 (−43, 1) 1

X0(357)∗ 2

√
2 1 1 (−47, 1) 1
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Outlook



What would be nice to achieve?

▶ Using Shnidman–Weiss1, find examples of A/Q with

#X(A/Q) = #X(A/Q)an ≠ 2
i
!

Can have p ∈ {3, 5, 7, 11, (13?), . . . , (31?), . . .?}.
▶ Find J/Q and 𝔭 | p “large” with

p2 | N (no p-adic L-functions),

𝔭 | c · IK ([KL] does not give X(J/Q)[𝔭] = 0), and

𝜌𝔭 irreducible (𝔭-descent hard)!

1Elements of prime order in Tate-Shafarevich groups of abelian varieties over Q,

arXiv:2106.14096
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What are the next steps and projects?

▶ Almost done: Verification for all 97 genus 2 curves

with absolutely simple RM Jacobian from the LMFDB.

▶ Verification for (almost?) all ∼ 1200 newforms of level ≤ 1000

with real-quadratic coefficients foreseeable.

▶ RM abelian threefolds: A generic curve of genus 3

is non-hyperelliptic, so we need

an explicit theory of Jacobians and heights.

▶ Strong BSD over totally real fields.
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Thank you!
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