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The BSD conjecture:
Why is it useful?



Fundamental problems

Let A be an abelian variety over Q.

Problem 1
Compute r := rk A(Q), the algebraic rank.

For every n > 1, there is an n-descent exact sequence
0 — A(Q)/n — Sel,(A/Q) — II(A/Q)[n] — 0

with the n-Selmer group Sel,,(A/Q) finite (and computable in principle).
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Let A be an abelian variety over Q.

Problem 1
Compute r := rk A(Q), the algebraic rank.

For every n > 1, there is an n-descent exact sequence
0 — A(Q)/n — Sel,(A/Q) — II(A/Q)[n] — 0

with the n-Selmer group Sel,,(A/Q) finite (and computable in principle).

Problem 2
Compute I11(A/Q), the Shafarevich-Tate group.
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Statement of the BSD conjecture

Birch-Swinnerton-Dyer (rank) conjecture

7= ran i= ordg=1 L(A,s)

For A = E an elliptic curve:
> ran well-defined by modularity of E/Q.
> Yields “day-night algorithm” to compute » and hence E(Q).
» Formulated based on computations in 1965.
» Proven if ryn < 1.
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Statement of the BSD conjecture

Birch-Swinnerton-Dyer (rank) conjecture

7= ran i= ordg=1 L(A,s)

For A = E an elliptic curve:

> ran well-defined by modularity of E/Q.

> Yields “day-night algorithm” to compute » and hence E(Q).
» Formulated based on computations in 1965.

» Proven if ryn < 1.

strong BSD conjecture

#A ors * #AV ors L A’ 1
#111(A/Q) = #I11(A/Q)an := L0 c Qo QA(Reg)
pCp i

Compare with the analytic class number formula!
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What are applications of the strong BSD conjecture?

Let C/Q be a curve of genus 1. Decide: C(Q) = 0? #C(Q) = o0?

>
>

>

Compute elliptic curve E/Q such that [C] € III(E/Q).
If one can decide C(Q) # 0, one can decide #C(Q) = oo
by deciding L(E, 1) = 0 (BSD rank conjecture).
Compute #I1I(E/Q) using strong BSD.

Enumerate representatives of I1I(E/Q).

Use the perfect Cassels-Tate pairing

(-, II(E/Q) x II(E/Q) — Q/Z
to decide existence of [D] € III(E/Q) with ([C], [D]) # 0.
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The BSD conjecture:
What is known?



What is already known about (strong) BSD?

Let A be a RM abelian variety over Q with associated newform f.
» Assume that ord.- L(f,s) € {0, 1} (hence ran € {0, dimA}).
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What is already known about (strong) BSD?

Let A be a RM abelian variety over Q with associated newform f.

» Assume that ord.- L(f,s) € {0, 1} (hence ran € {0, dimA}).
» This implies by combining the Gross—Zagier formula with
the Heegner point Fuler system of Kolyvagin-Logachév:

7 =Tran, (BSD rank conjecture)
#I11(A/Q) < oo,
#IH(A/Q)an € Q>0-

> Unknown: #II1(A/Q) = #ITI(A/Q)an (strong BSD)
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In which cases has strong BSD been verified?

» For elliptic curves with ran < 1:

m Strong BSD verified exactly for levels N < 5000 combining work of
GRIGOROV—JORZA—PATRIKIS-STEIN—TARNITX (2009), MiILLER (2011),
MiLLer-StoLL (2013, isogeny descent),

Creutz-MILLER (2012, second isogeny descent),
Lawson-WurtHricH (2016, use of p-adic L-functions).
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» For RM abelian varieties of dimension > 1:

m FLyNN-LEPREVOST-SCHAEFER-STEIN-STOLL-WETHERELL (2001):
BSD for some Jacobians of dimension 2 numerically.

® vaN BomMEL (2019): BSD for some hyperelliptic Jacobians
numerically up to squares.
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In which cases has strong BSD been verified?

» For elliptic curves with ran < 1:

m Strong BSD verified exactly for levels N < 5000 combining work of
GRIGOROV—JORZA—PATRIKIS-STEIN—TARNITX (2009), MiILLER (2011),
MiLLer-StoLL (2013, isogeny descent),

Creutz-MILLER (2012, second isogeny descent),
Lawson-WurtHricH (2016, use of p-adic L-functions).
» For RM abelian varieties of dimension > 1:

m FLyNN-LEPREVOST-SCHAEFER-STEIN-STOLL-WETHERELL (2001):
BSD for some Jacobians of dimension 2 numerically.

® vaN BomMEL (2019): BSD for some hyperelliptic Jacobians
numerically up to squares.

m SKINNER-URBAN (2014): GL; Iwasawa Main Conjecture (IMC)
for primes p of good ordinary reduction and p, irreducible.

m SKINNER (2016): GL, IMC
for primes p of bad multiplicative reduction and p, irreducible.

m CASTELLA-CIPERIANI-SKINNER-SPRUNG (2019, preprint):

0 (#111(A/Q)) = 0 (HITI(A/Q)ar)
if N is square-free, p N, and p, irreducible.
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What are our new results
in dimension 2?



How to bound #I11(A/Q)?

There are two reasons why III(A) could be infinite:
> “horizonal”: TI(A)[p] # O for infinitely many p.
> “vertical”: III(A)[p*™] = F & (Qp/Z,)" infinite for one p.
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Solution to the “horizontal” problem:

Theorem (K.): explicit Euler system of KoLyvaciN-LoGacHEv

Let A be a RM abelian variety over Q. Denote O := Endg(A).
One has [11(A/O)|p| = 0 for all p with

> py:Gal(Q|Q) — Auty, (A[v](Q)) irreducible and
> p4{2-c-gedg(Ix) with Heegner indices Ix and
the Tamagawa product ¢ (both can be refined to O-ideals).
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> “vertical”: III(A)[p™] = F ® (Qp/Zy)" infinite for one p.
Solution to the “horizontal” problem:

Theorem (K.): explicit Euler system of KoLyvaciN-LoGacHEv

Let A be a RM abelian variety over Q. Denote O := Endg(A).
One has [11(A/O)|p| = 0 for all p with
> py:Gal(Q|Q) — Auty, (A[v](Q)) irreducible and
> p4{2-c-gedg(Ix) with Heegner indices Ix and
the Tamagawa product ¢ (both can be refined to O-ideals).

> These p are explicitly computable and cover almost all p.
> In fact, p2°" % KII1(A/Q)[p*] = 0 if p, irreducible and p 1 2c.
> We also have an explicit bound on III(A/Q)[p*] for all p.
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What are the main obstacles in dimension > 1?

Problems when dim A > 1 (necessary input for Euler system)

» We don’t have an analog of Mazur’s classification
of rational isogenies of prime degree for all A:
moduli spaces have dimension > 1.

> We have to compute Heegner points.
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What are the main obstacles in dimension > 1?

Problems when dim A > 1 (necessary input for Euler system)

» We don’t have an analog of Mazur’s classification
of rational isogenies of prime degree for all A:
moduli spaces have dimension > 1.

> We have to compute Heegner points.

We solve the problems for concretely given A = Jac(C).
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How to compute the remaining III(A/Q)[p*]?

Two tools:
> Perform a p"-descent to compute Sely(A/Q).
m Works very well if p,: is reducible.
m Works for general p" in principle, but:
m Infeasible if py» has large image,
e.g., #O/v" > 7 and py» irreducible, even assuming GRH.
» Compute the p-adic L-function and use the GL, IMC.

m Can be computed very efficiently with overconvergent modular
symbols using the PoLLack-STEVENS—GREENBERG algorithm.
m Requires py to be irreducible.
(But: work in progress joint with CAsTELLA)
m Unclear for good non-ordinary and especially
bad non-multiplicative reduction.
m Requires the computation of the p-adic regulator if ., > 0 or
if the reduction is split multiplicative.
(work in progress by KayA-MULLER-VAN DER PuT)
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How do we verify the conjecture?

y

NG

OyK
1
L'(f*/K,1) Ix
#I11(A)an

Pr

Lp(f, T) Selp

H'(G;, A[¥])

[KL] 1I(A)[¥]

/

BSD(A)
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Sketch of proofs



Almost all p, are irreducible

Theorem (K.)
Assume v,(N) < 1.
If py is reducible, p;” = ¢ @ ¢ ', with ¢ of conductor d with d* | N.
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Assume v,(N) < 1.

If py is reducible, p;” = ¢ @ ¢ 'y, with ¢ of conductor d with d* | N.
Hence: If p, is reducible as an Fy-representation, then

an eigenvalue of p,(Froby) has order dividing ord(f € (Z/d)*).

Hence:
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for d maximal with d? | N.
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Almost all p, are irreducible

Theorem (K.)

Assume v,(N) < 1.

If py is reducible, p;” = ¢ @ ¢ 'y, with ¢ of conductor d with d* | N.
Hence: If p, is reducible as an Fy-representation, then

an eigenvalue of p,(Froby) has order dividing ord(¢ € (Z/d)¥).

Hence:

p| ged (reso[x] ( charpol ppx;(py=(Froby)), xord(Cez/dy) _ 1))
UpN

for d maximal with d? | N.

> We can also treat the case p* | N.
> We can also do maximal image.
» Have upper bound on p depending on N.
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Computing (a multiple of) the Heegner index I

Let ] = Jac(X). There is an isogeny 7 : Jo(N)/Annt(f) =: Af — ].
Let K be a Heegner field for J.

Ap(K) — Af(C) — C8/Af

l | b

J(K) —— J(C) —— C/A

Complex approximation of yk € C3/As using integrals.
Compute the image of yx under the isogeny 7 : C8 /Ay — C$/A.
Invert the Abel-Jacobi map J(C) S C8/A using theta functions.
Approximate the Mumford representation in J(K).

SAEE SRR

Prove correctness using fi(yk) from Gross—Zagier (reconstruct f1g on
J(K) from h, on Ag with respect to isogeny ¢ : A}/ — Ap).
Note that we use X hyperelliptic in steps 3 and 4.
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How to compute #I11(A/Q)an exactly?

» Compute Lg’}) € Q(f) exactly

using modular symbols and BALAKRISHNAN-MULLER-STEIN
and vaN BomMEL's code to compute Q4.
> If (A, 1) # 0, this gives #II11(A/Q)an € Q>0 exactly.
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How to compute #I11(A/Q)an exactly?

(fl)

using modular symbols and BALAKRISHNAN-MULLER-STEIN
and vaN BomMEL's code to compute Q4.

> If (A, 1) # 0, this gives #II11(A/Q)an € Q>0 exactly.

> If L(A 1) =0:

m Choose a Heegner field K and compute %

using Gross—Zagier, and hence compute #111(A/K)., € Qso.
m Compute #I11(A"/0),, € Qs exactly.
m Use #I11(A/K)an = #I11(A/Q)an - #LII(AX/Q)an up to powers of 2
that can be explicitly bounded to compute #I1I(A/Q)an € Q>0 exactly.

€ Q. exactly
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Examples in dimension 2



Can you give an example? A = Jac(Xo(39)/w13)
> 0=2[V2]

> ¥ =7a =0
> #II(A/Q)an =1
> A(Q) = A(Q)tors = Z/2 X Z/(2 : 7)
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Can you give an example? A = Jac(Xo(39)/w13)

> 0=2[V2]

> ¥ =7a =0

> HIII(A/Q)an = 1

> AQ) = A(Q)tors = Z/2XZ/(2-7)

> pyis reducible exactly for p = (v2) and exactly one pp = 7.
> c=7

> [KL] with Iy =3, = 7 gives #I1I(A/Q)[p] = O for p { (V2),7.
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non-split exact, and Sel,(A/Q) = Z/7 = A(Q)[7] by descent.

Hence III(A/Q)[»] = 0.



Can you give an example? A = Jac(Xo(39)/w13)

VVy VvVYyVYyVYYVYY

0 =Z[V2]

=7 =0

#II(A/Q)an =1

A(Q) = A(Q)tors = Z/2 X Z/(2 : 7)

py is reducible exactly for p = (v2) and exactly one pp = 7.
Cc =

[KL] with IQ(\/—_23) =7 gives #I1I(A/Q)[p»] = 0 for p 1 (V2),7.
Selr(A/Q) = (Z/2)* = A(Q)/2 gives I1I(A/Q)[2] = 0.

Py is reducible with

0 — Z/7 — A[p] — 7 — 1

non-split exact, and Sel,(A/Q) = Z/7 = A(Q)[7] by descent.
Hence ITI(A/Q)[r] = 0.
The p-adic L-function has constant term a unit in Oy =~ Z7, hence

the integral GL, IMC shows Sel;(A/Q) = 0 since p; is irreducible.
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All Atkin-Lehner quotients of genus 2 of our type (I)

X r O #l,n ppred. ¢ (D,Ip) #II
Xo(23) 0 V5 1 114 11 (=7,11) 119
X0(29) 0 V2 1 71 7 (=7,7) 70
Xo(31) 0 V5 1 V5 5 (-11,5) 59
Xo(35)/w; 0 V17 1 21 1 (-19,1) 1
Xo(39)/wiz 0 V2 1 V2,77 7 (=23,7) 70
Xo(67)* 2 5 1 1 (-7,1) 1
Xo(73)* 2 V5 1 1 (-19,1) 1
Xo(85)* 2 V2 1 V2 1 (-19,1) 1
Xo(87)/we 0 V5 1 V5 5 (=23,5) 59
X0(93)* 2 V5 1 1 (-11,1) 1
Xo(103)* 2 5 1 1 (-11,1) 1
Xo(107)* 2 V5 1 1 (-7,1) 1
Xo(115) 2 5 1 1 (-11,1) 1
Xo(125)F 2 A5 1 V5 1 (-11,1) 5°

14 /17



All Atkin-Lehner quotients of genus 2 of our type (II)

X r O #,, ppred. c (D,Ip) #III
Xo(133) 2 5 1 1 (-31,1) 1
Xo(147) 2 V2 1 V2,71 1 (-47,1) 70
Xo(161) 2 5 1 1 (-19,1) 1
Xo(165) 2 V2 1 V2 1 (-131,1) 1
Xo(167)t 2 V5 1 1 (-15,1) 1
Xo(177) 2 5 1 1 (-11,1) 1
Xo(191)* 2 5 1 1 (-7,1) 1
Xo(205) 2 5 1 1 (=31,1) 1
Xo(209 2 V2 1 1 (=51,1) 1
Xo(213) 2 5 1 1 (-11,1) 1
Xo(221) 2 5 1 1 (=351 1
Xo(287) 2 5 1 1 (=31,1) 1
Xo(299) 2 5 1 1 (-43,1) 1
Xo(357 2 V2 1 1 (-47,1) 1




Outlook



What would be nice to achieve?

» Using SHNiDMAN-WEIss!, find examples of A/Q with
#I11(A/Q) = #III(A/Q)an # 2"

Canhavep € {3,5,7,11,(13?),...,(31?),...7}.
» Find J/Q and p | p “large” with
= p? | N (no p-adic L-functions),
m p|c-Ix ([KL] does not give III(J/Q)[p] = 0), and
m p, irreducible (p-descent hard)!

1Elements of prime order in Tate-Shafarevich groups of abelian varieties over Q,
arXiv:2106.14096
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What are the next steps and projects?

> Almost done: Verification for all 97 genus 2 curves
with absolutely simple RM Jacobian from the LMFDB.
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What are the next steps and projects?

> Almost done: Verification for all 97 genus 2 curves
with absolutely simple RM Jacobian from the LMFDB.
» Verification for (almost?) all ~ 1200 newforms of level < 1000
with real-quadratic coefficients foreseeable.
» RM abelian threefolds: A generic curve of genus 3
is non-hyperelliptic, so we need
an explicit theory of Jacobians and heights.
» Strong BSD over totally real fields.
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Thank you!
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