Computing quadratic points on $X_{0}(N)$

Timo Keller
joint work with Nikola Adžaga, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman, and Borna Vukorepa
June 22, 2023
Representation Theory XVIII - Number Theory
Dubrovnik

Rijksuniversiteit Groningen

Rational points on modular curves

Torsion primes: $X_{1}(p)(\mathbf{Q})$

Theorem (Mazur 1977)

Let E / \mathbf{Q} be an elliptic curve. If $x \in E(\mathbf{Q})_{\text {tors }}$, then the support of $\operatorname{ord}(x)$ is contained in $\{2,3,5,7\}$.

> The proof computes the non-cuspidal points in $\left(g\left(X_{1}(p)\right)=0 \Longleftrightarrow p \in\{2,3,5,7\}\right)$

Torsion primes: $X_{1}(p)(\mathbf{Q})$

Theorem (Mazur 1977)

Let E / \mathbf{Q} be an elliptic curve. If $x \in E(\mathbf{Q})_{\text {tors }}$, then the support of $\operatorname{ord}(x)$ is contained in $\{2,3,5,7\}$.

The proof computes the non-cuspidal points in $X_{1}(p)(\mathbf{Q})$ for all p. $\left(g\left(X_{1}(p)\right)=0 \Longleftrightarrow p \in\{2,3,5,7\}\right)$

Isogeny primes: $X_{0}(p)(\mathbf{Q})$

Theorem (Mazur 1978)

Let E / \mathbf{Q} be an elliptic curve. If E has a cyclic p-isogeny, then $p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}$.

If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in

Isogeny primes: $X_{0}(p)(\mathbf{Q})$

Theorem (Mazur 1978)

Let E / \mathbf{Q} be an elliptic curve. If E has a cyclic p-isogeny, then $p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}$.

If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in $X_{0}(p)(\mathbf{Q})$ for all p.
Irreducibility of mod-p Galois representations for example
important for:
to diophantine equations

Isogeny primes: $X_{0}(p)(\mathbf{Q})$

Theorem (Mazur 1978)

Let E / \mathbf{Q} be an elliptic curve. If E has a cyclic p-isogeny, then $p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}$.
If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in $X_{0}(p)(\mathbf{Q})$ for all p.
Irreducibility of mod- p Galois representations for example important for:

- Modular Approach to diophantine equations
- Iwasawa theory, Euler systems and the

Isogeny primes: $X_{0}(p)(\mathbf{Q})$

Theorem (Mazur 1978)

Let E / \mathbf{Q} be an elliptic curve. If E has a cyclic p-isogeny, then $p \in\{2,3,5,7,11,13,17,19,37,43,67,163\}$.

If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in $X_{0}(p)(\mathbf{Q})$ for all p.
Irreducibility of mod- p Galois representations for example important for:

- Modular Approach to diophantine equations
- Iwasawa theory, Euler systems and the Birch-Swinnerton-Dyer conjecture

Higher degree fields: $X_{1}(p)(K)$

Theorem (Merel, Kamienny, Oesterlé)
Let K be a number field of degree d.
Then $Y_{1}(p)(K)=\emptyset$ if $p>\left(3^{d / 2}+1\right)^{2}$.

Complete computation of degree d points for:

- d =2: Kamienny
- $d=3$: Derickx-Etropolski-van Hoeij-Morrow-Zureick-Brown
- $4<d<7$. Derickx-Kamienny-Stein-Stoll
- $d=8$: Derickx-Stoll/Khawaja

Higher degree fields: $X_{1}(p)(K)$

Theorem (Merel, Kamienny, Oesterlé)

Let K be a number field of degree d.

$$
\text { Then } Y_{1}(p)(K)=\emptyset \text { if } p>\left(3^{d / 2}+1\right)^{2} .
$$

Complete computation of degree d points for:

- $d=2$: Kamienny
- $d=3$: Derickx-Etropolski-van Hoeij-Morrow-Zureick-Brown
- $4 \leq d \leq 7$: Derickx-Kamienny-Stein-Stoll
- $d=8$: Derickx-Stoll/Khawaja

Higher degree fields: $X_{0}(N)(K)$

Harder: CM point in $X_{0}(p)(K)$ for p split in K with $h_{K}=1$.
Conjecture
If $N>C(d)$, then $X_{0}(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or $N\left(\operatorname{dim} X^{(d)}=d\right)$

Higher degree fields: $X_{0}(N)(K)$

Harder: CM point in $X_{0}(p)(K)$ for p split in K with $h_{K}=1$.

Conjecture

If $N>C(d)$, then $X_{0}(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or $N\left(\operatorname{dim} X^{(d)}=d\right)$.
Non-explicit bounds by Momose-Larson-Vaintrob (2014, GRH)

Higher degree fields: $X_{0}(N)(K)$

Harder: CM point in $X_{0}(p)(K)$ for p split in K with $h_{K}=1$.

Conjecture

If $N>C(d)$, then $X_{0}(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or $N\left(\operatorname{dim} X^{(d)}=d\right)$. Fixed K :
Non-explicit bounds by Momose-Larson-Vaintrob (2014, GRH).
Explicit results for certain

- all $N=p, h_{K} \neq 1$, conditional on GRH
(Banwait-Derickx 2022)
- all $N=p$ for $K=\mathbf{Q}(\sqrt{d})$ with $d=-5,2,3,5,6,7$ and for
semistable E (Michaud-Jacobs 2022)
- all N for 19 K , conditional on GRH
(Banwait-Najman-Padurariu 2022) 4 / 12

Higher degree fields: $X_{0}(N)(K)$

Harder: CM point in $X_{0}(p)(K)$ for p split in K with $h_{K}=1$.

Conjecture

If $N>C(d)$, then $X_{0}(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or $N\left(\operatorname{dim} X^{(d)}=d\right)$. Fixed K :
Non-explicit bounds by Momose-Larson-Vaintrob (2014, GRH).
Explicit results for certain quadratic K :

- all $N=p, h_{K} \neq 1$, conditional on GRH
(Banwait-Derickx 2022)
- all $N=p$ for $K=\mathbf{Q}(\sqrt{d})$ with $d=-5,2,3,5,6,7$ and for semistable E (Michaud-Jacobs 2022)
- all N for $19 K$, conditional on GRH
(Banwait-Najman-Padurariu 2022)

Quadratic points on $X_{0}(N)$ of small genus

Known results for fixed N

Problem for describing quadratic points on X of genus ≥ 2 : there can be infinitely many, namely iff X is hyperelliptic or $X \rightarrow E$ with rk $E(\mathbf{Q})>0$ (Harris-Silverman).

For the following N, the quadratic points on $X_{0}(N)$ had previously been computed:

- $X_{0}(N)$ hyperelliptic, rank 0: Bruin-Najman
- $X_{0}(N)$ non-hyperelliptic of genus ≤ 5, rank 0: Ozman-Siksek
- $X_{0}(N)$ of genus <5, rank >0 : Box
- the other bielliptic $X_{0}(N)$: Najman-Vukorepa
- some other $X_{0}(N): N=77,91,125,169$.

Known results for fixed N

Problem for describing quadratic points on X of genus ≥ 2 : there can be infinitely many, namely iff X is hyperelliptic or $X \rightarrow E$ with rk $E(\mathbf{Q})>0$ (Harris-Silverman).

For the following N, the quadratic points on $X_{0}(N)$ had previously been computed:

- $X_{0}(N)$ hyperelliptic, rank 0: Bruin-Najman
- $X_{0}(N)$ non-hyperelliptic of genus ≤ 5, rank 0 : Ozman-Siksek
- $X_{0}(N)$ of genus ≤ 5, rank >0 : Box
- the other bielliptic $X_{0}(N)$: Najman-Vukorepa
- some other $X_{0}(N): N=77,91,125,169$.

Our results

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_{0}(N)$ by improving state-of-the-art methods:

Theorem
For all $X_{0}(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime),
the (finitely many) quadratic points on $X_{0}(N)$ are only cusps and
CM points, except for $N=103(g=8)$ and a point over
$\mathbf{Q}(\sqrt{2885})$

Our results

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_{0}(N)$ by improving state-of-the-art methods:

Theorem

For all $X_{0}(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime), the (finitely many) quadratic points on $X_{0}(N)$ are only cusps and CM points, except for $N=103(g=8)$ and a point over $\mathbf{Q}(\sqrt{2885})$.

Furthermore, for the points we give the

- jinvariants,
- (possibly) CM discriminants,
- the action of $I N /(N)$ on them

Our results

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_{0}(N)$ by improving state-of-the-art methods:

Theorem

For all $X_{0}(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime), the (finitely many) quadratic points on $X_{0}(N)$ are only cusps and CM points, except for $N=103(g=8)$ and a point over $\mathbf{Q}(\sqrt{2885})$.

Furthermore, for the points we give the

- j-invariants,
- (possibly) CM discriminants,
- the action of $W(N)$ on them.

Our results

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_{0}(N)$ by improving state-of-the-art methods:

Theorem

For all $X_{0}(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime), the (finitely many) quadratic points on $X_{0}(N)$ are only cusps and CM points, except for $N=103(g=8)$ and a point over $\mathbf{Q}(\sqrt{2885})$.

Furthermore, for the points we give the

- j-invariants,
- (possibly) CM discriminants,
- the action of $W(N)$ on them.

Limit: need to compute $J_{0}(N)(\mathbf{Q})_{\text {tors }}$

Example: $X_{0}(58)$

Point	Field	j-invariant	CM
P_{1}	$\mathbb{Q}(\sqrt{-1})$	1728	-4
P_{2}	$\mathbb{Q}(\sqrt{-1})$	287496	-16
P_{3}	$\mathbb{Q}(\sqrt{-7})$	-3375	-7
P_{4}	$\mathbb{Q}(\sqrt{-7})$	16581375	-28
P_{5}	$\mathbb{Q}(\sqrt{-1})$	1728	-4
P_{6}	$\mathbb{Q}(\sqrt{29})$	$-56147767009798464000 \sqrt{29}+302364978924945672000$	-232
P_{7}	$\mathbb{Q}(\sqrt{-7})$	-3375	-7
P_{8}	$\mathbb{Q}(\sqrt{-7})$	-3375	-7

Our methods

Computing models of $X_{0}(N) / W^{\prime}(N)$ and the j-map

Main obstacle in extending previous computations: curves of high genus.

We compute:

Computing models of $X_{0}(N) / W^{\prime}(N)$ and the j-map

Main obstacle in extending previous computations:
curves of high genus.
We compute:

- diagonalized models of $X_{0}(N)$,
$X_{0}(N) \rightarrow X_{0}(N) / W^{\prime}(N)$

Computing models of $X_{0}(N) / W^{\prime}(N)$ and the j-map

Main obstacle in extending previous computations:
curves of high genus.
We compute:

- diagonalized models of $X_{0}(N)$,
- Atkin-Lehner quotients $X_{0}(N) \rightarrow X_{0}(N) / W^{\prime}(N)$,
using q-expansions up to $O\left(q^{m}\right)$ with the
(easy to compute) bound

$$
m=(2 g-2) r+1+\operatorname{deg}(j)
$$

and

Computing models of $X_{0}(N) / W^{\prime}(N)$ and the j-map

Main obstacle in extending previous computations:
curves of high genus.
We compute:

- diagonalized models of $X_{0}(N)$,
- Atkin-Lehner quotients $X_{0}(N) \rightarrow X_{0}(N) / W^{\prime}(N)$,
- $j: X_{0}(N) \rightarrow \mathbb{P}^{1}$ using q-expansions up to $O\left(q^{m}\right)$ with the (easy to compute) bound

$$
m=(2 g-2) r+1+\operatorname{deg}(j)
$$

and

$$
r>\frac{\operatorname{deg}(j)}{2(g-1)}+\frac{1}{2}, \quad \operatorname{deg}(j)=N \prod_{p \mid N}\left(1+\frac{1}{p}\right)
$$

efficiently.

Going down

Use finite morphisms $X_{0}(N) \rightarrow X$
with quadratic points on X known.
More complicated if there are infinitely many quadratic points.

Going down

Use finite morphisms $X_{0}(N) \rightarrow X$
with quadratic points on X known.
More complicated if there are infinitely many quadratic points.
Example $(N=2 \cdot 29)$
Najman-Vurokepa: Knowledge of quadratic points on $X_{0}(29)$
(hyperelliptic) gives: Quadratic point on $X_{0}(2 \cdot 29)$ is CM or
corresponds to a Q-point of
with $r<g$ (Chabauty) or
only cusps and CM points.
Result: $2^{\omega(N)}$ cusps, 7 CM points with $j \in \mathbb{Q}$,
1 CM point with CM by -232 defined over $\mathbf{Q}(\sqrt{29})$.

Going down

Use finite morphisms $X_{0}(N) \rightarrow X$
with quadratic points on X known.
More complicated if there are infinitely many quadratic points.

Example ($N=2 \cdot 29$)

Najman-Vurokepa: Knowledge of quadratic points on $X_{0}(29)$ (hyperelliptic) gives: Quadratic point on $X_{0}(2 \cdot 29)$ is CM or corresponds to a Q-point of

- $X_{0}(2 \cdot 29) / w_{29}$ with $r<g$ (Chabauty) or
- $X_{0}(2 \cdot 2 \cdot 29)^{+}$: only cusps and CM points.

Result: $2^{\omega(N)}$ cusps, 7 CM points with $j \in \mathbf{Q}$, 1 CM point with CM by -232 defined over $\mathbf{Q}(\sqrt{29})$.

Rank 0

Assume $J_{0}(N)(\mathbf{Q})$ is finite and we know $I \in \mathbf{Z}_{\geq 1}$ with I • $J_{0}(N)(\mathbf{Q}) \subseteq C_{0}(N)(\mathbf{Q})$, the cuspidal divisor class group, e.g. from bound on $J_{0}(N)(\mathbf{Q})_{\text {tors }}$ from reductions modulo p's.

Note: $\{$ quadratic points on $X\} \rightarrow X^{(2)}(Q), P \mapsto\left\{P, P^{\sigma}\right\}$

Rank 0

Assume $J_{0}(N)(\mathbf{Q})$ is finite and we know $I \in \mathbf{Z}_{\geq 1}$ with I • $J_{0}(N)(\mathbf{Q}) \subseteq C_{0}(N)(\mathbf{Q})$, the cuspidal divisor class group, e.g. from bound on $J_{0}(N)(\mathbf{Q})_{\text {tors }}$ from reductions modulo p 's.

Note: $\{$ quadratic points on $X\} \rightarrow X^{(2)}(\mathbf{Q}), P \mapsto\left\{P, P^{\sigma}\right\}$.
For a hypothetical unknown quadratic point
$D=Q+Q^{\sigma} \in X_{0}(N)^{(2)}(\mathbf{Q})$ do Mordell-Weil sieve:

$X^{(2)}\left(\mathbf{F}_{p}\right)$ $\longrightarrow \quad J\left(F_{p}\right)$

using the

Rank 0

Assume $J_{0}(N)(\mathbf{Q})$ is finite and we know $I \in \mathbf{Z}_{\geq 1}$ with I $\cdot J_{0}(N)(\mathbf{Q}) \subseteq C_{0}(N)(\mathbf{Q})$, the cuspidal divisor class group, e.g. from bound on $J_{0}(N)(\mathbf{Q})_{\text {tors }}$ from reductions modulo p 's.

Note: $\{$ quadratic points on $X\} \rightarrow X^{(2)}(\mathbf{Q}), P \mapsto\left\{P, P^{\sigma}\right\}$.
For a hypothetical unknown quadratic point
$D=Q+Q^{\sigma} \in X_{0}(N)^{(2)}(\mathbf{Q})$ do Mordell-Weil sieve:

$$
X^{(2)}(\mathbf{Q}) \stackrel{\iota}{\iota} J(\mathbf{Q})_{\text {tors }} \xrightarrow{[/]} C_{0}(N)(\mathbf{Q})
$$

$$
\underset{\downarrow}{\operatorname{red}_{p}} \quad \underset{\sim}{\operatorname{red}_{p}} \quad \underset{[\tilde{\eta}]}{ } \quad \varliminf^{\operatorname{red}_{p}}
$$

$$
\left.X^{(2)}\left(\mathbf{F}_{p}\right) \xrightarrow{\tilde{\imath}} \stackrel{\downarrow}{ } \mathbf{F}_{p}\right) \xrightarrow{\tilde{[1]}} \stackrel{\downarrow}{\downarrow} J\left(\mathbf{F}_{p}\right)
$$

using the Derickx formal immersion criterion.

The Atkin-Lehner sieve

Assume there is d with $J(\mathbf{Q})=\left(1+w_{d}\right) J(\mathbf{Q}) \oplus\left(1-w_{d}\right) J(\mathbf{Q})$
(up to 2-torsion) with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text {tors }}$.

The Atkin-Lehner sieve

Assume there is d with $J(\mathbf{Q})=\left(1+w_{d}\right) J(\mathbf{Q}) \oplus\left(1-w_{d}\right) J(\mathbf{Q})$
(up to 2-torsion) with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text {tors }}$.
Let G be with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text {tors }}$.

gives all quadratic points not being pullbacks from $X_{0}(N) / w_{d}(\mathbf{Q})$ (known e.g. from (quadratic) Chabauty computations) or
fixed points of w_{d} (easy to compute)

The Atkin-Lehner sieve

Assume there is d with $J(\mathbf{Q})=\left(1+w_{d}\right) J(\mathbf{Q}) \oplus\left(1-w_{d}\right) J(\mathbf{Q})$
(up to 2-torsion) with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text {tors }}$.
Let G be with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text {tors }}$.
$X^{(2)}(\mathbf{Q}) \xrightarrow{\iota} J(\mathbf{Q}) \xrightarrow{1-w_{d}} G$

$X^{(2)}\left(\mathbf{F}_{p}\right) \xrightarrow{\tilde{\iota}} J\left(\mathbf{F}_{p}\right) \xrightarrow{1-\tilde{w}_{d}} J\left(\mathbf{F}_{p}\right)$
gives all quadratic points not being pullbacks from $X_{0}(N) / w_{d}(\mathbf{Q})$ (known e.g. from (quadratic) Chabauty computations) or fixed points of w_{d} (easy to compute).

It uses the

The Atkin-Lehner sieve

Assume there is d with $J(\mathbf{Q})=\left(1+w_{d}\right) J(\mathbf{Q}) \oplus\left(1-w_{d}\right) J(\mathbf{Q})$ (up to 2-torsion) with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text {tors }}$.

Let G be with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text {tors }}$.
$X^{(2)}(\mathbf{Q}) \xrightarrow{\iota} J(\mathbf{Q}) \xrightarrow{1-w_{d}} G$

$X^{(2)}\left(\mathbf{F}_{p}\right) \xrightarrow{\tilde{\iota}} J\left(\mathbf{F}_{p}\right) \xrightarrow{1-\tilde{w}_{d}} J\left(\mathbf{F}_{p}\right)$
gives all quadratic points not being pullbacks from $X_{0}(N) / w_{d}(\mathbf{Q})$ (known e.g. from (quadratic) Chabauty computations) or fixed points of w_{d} (easy to compute).

It uses the symmetric Chabauty criterion of Box-Siksek exploiting $\operatorname{rk} J(\mathbf{Q})=\operatorname{rk}^{\boldsymbol{w}_{d}}(\mathbf{Q})$.

Comparison with other sieves

Advantages:

- Can work with finite group $G \subseteq J(\mathbf{Q})_{\text {tors }}$.
- No explicit use of $X_{0}(N) / w_{d}$ in the sieve.

Comparison with other sieves

Advantages:

- Can work with finite group $G \subseteq J(\mathbf{Q})_{\text {tors }}$.
- No explicit use of $X_{0}(N) / w_{d}$ in the sieve.

Disadvantages:

- Need existence of d with $\operatorname{rk} J(Q)=r k J^{w d}(Q)$

Comparison with other sieves

Advantages:

- Can work with finite group $G \subseteq J(\mathbf{Q})_{\text {tors }}$.
- No explicit use of $X_{0}(N) / w_{d}$ in the sieve.

Disadvantages:

- Need existence of d with $r k J(\mathbf{Q})=r k J^{w_{d}}(\mathbf{Q})$.
- Need generators of G with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text {tors }}$.

Comparison with other sieves

Advantages:

- Can work with finite group $G \subseteq J(\mathbf{Q})_{\text {tors }}$.
- No explicit use of $X_{0}(N) / w_{d}$ in the sieve.

Disadvantages:

- Need existence of d with $\mathrm{rk} J(\mathbf{Q})=r k J^{w_{d}}(\mathbf{Q})$.
- Need generators of G with $\left(1-w_{d}\right) J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text {tors }}$.

Thank you!

