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Rational points on modular curves



Torsion primes: X;(p)(Q)

Theorem (Mazur 1977)

Let E/Q be an elliptic curve. If , then the support
of ord(x) is contained in {2,3,5,7}.
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Theorem (Mazur 1977)

Let E/Q be an elliptic curve. If , then the support
of ord(x) is contained in {2,3,5,7}.

The proof computes the non-cuspidal points in for all p.
(g(X1(p)) =0 <= p€{2,3,57})
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Isogeny primes: X,(p)(Q)

Theorem (Mazur 1978)

Let E/Q be an elliptic curve. If E has a , then
p e {2,3,57,11,13,17,19, 37, 43,67, 163}.

If E is in addition non-CM, then p < 37.
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Isogeny primes: X,(p)(Q)

Theorem (Mazur 1978)

Let E/Q be an elliptic curve. If E has a , then
p e {2,3,57,11,13,17,19, 37, 43,67, 163}.

If E is in addition non-CM, then p < 37.

The proof computes the non-cuspidal points in for all p.

Irreducibility of mod-p Galois representations for example
important for:

° to diophantine equations

e |wasawa theory, Euler systems and the
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Higher degree fields: X;(p)(K)

Theorem (Merel, Kamienny, Oesterlé)
Let K be a number field of degree d.

Then Yi(p)(K) =0 if
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Higher degree fields: X;(p)(K)

Theorem (Merel, Kamienny, Oesterlé)
Let K be a number field of degree d.

Then Yi(p)(K) =0 if

Complete computation of degree d points for:

e d = 2: Kamienny

e d = 3: Derickx—Etropolski-van Hoeij—Morrow—Zureick-Brown
e 4 < d < 7: Derickx—-Kamienny-Stein—Stoll

e d = 8: Derickx=Stoll/Khawaja
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Higher degree fields: X;(N)(K)

CM point in Xp(p)(K) for p split in K with hx = 1.
Conjecture

If N> C(d), then Xo(N)(K) consists only of cusps and CM
points for all K of degree d.
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Conjecture

If N> C(d), then Xo(N)(K) consists only of cusps and CM
points for all K of degree d.

Fix K (infinitely many curves) or N (dim X(9) = d).
Non-explicit bounds by Momose-Larson—Vaintrob (2014, GRH).
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Higher degree fields: X;(N)(K)

Harder: CM point in Xp(p)(K) for p split in K with hx = 1.
Conjecture

If N> C(d), then Xo(N)(K) consists only of cusps and CM
points for all K of degree d.

Fix K (infinitely many curves) or N (dim X(9) = d). Fixed K:
Non-explicit bounds by Momose-Larson—Vaintrob (2014, GRH).
Explicit results for certain quadratic K:

e all N = p, hx # 1, conditional on GRH
(Banwait—Derickx 2022)

e all N = p for K = Q(+/d) with d = —5,2,3,5,6,7 and for
semistable £ (Michaud-Jacobs 2022)

e all N for 19 K, conditional on GRH
(Banwait-Najman—Padurariu 2022) 4/12



Quadratic points on Xp(N)
of small genus




Known results for fixed N

Problem for describing quadratic points on X of genus > 2: there
can be infinitely many, namely iff X is hyperelliptic or X — E with
rk E(Q) > 0 (Harris=Silverman).
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Known results for fixed N

Problem for describing quadratic points on X of genus > 2: there
can be infinitely many, namely iff X is hyperelliptic or X — E with
rk E(Q) > 0 (Harris=Silverman).

For the following N, the quadratic points on Xo(/N) had previously
been computed:

e Xo(N) hyperelliptic, rank 0: Bruin—Najman

(
o Xo(N
Xo(N) of genus <5, rank > 0: Box
the other bielliptic Xo(N): Najman—Vukorepa

some other Xo(N): N =77,91,125,169.

) non-hyperelliptic of genus < 5, rank 0: Ozman-Siksek
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Our results

At an MIT workshop on modular curves (aim: extend the LMFDB)
we started to extend these computations to push to highest
possible genus of Xo(N) by improving state-of-the-art methods:
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CM points, except for N = 103 (g = 8) and a point over
Q(+/2885).
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Our results

At an (aim: extend the LMFDB)
we started to extend these computations to push to highest

possible genus of Xp(/N) by improving state-of-the-art methods:
Theorem

For all Xo(N) of genus < 8 (N composite) and < 10 (N prime),
the (finitely many) quadratic points on Xo(N) are only cusps and

CM points, except for N = 103 (g = 8) and a point over
Q(+/2885).

Furthermore, for the points we give the

e j-invariants,
e (possibly) CM discriminants,
e the action of W/(N) on them.

need to compute Jo(N)(Q)tors 501



SETTHD T

Point Field j-invariant CM
P QGH/1) 1728 —4
P Q(v-1) 287496 —16
P QW) —3375 —7
P, QGH/—7) 16581375 —28
Py Q/-1) 1728 4
Py Q(+/29) —561477670097984640004/29 4 302364978924945672000 —232
P, QW-T) —3375 7
B QH/-7) —3375 -7
Py twag Py P wag Py Py wsg P
we we wo we w2 w2
wWs8 w58 w58 W5 w9 w9
) wag Py Py wag Pyg Py w58 Pg



Our methods




Computing models of Xo(N)/W’'(N) and the j-map

Main obstacle in extending previous computations:
curves of high genus.

8 /12



Computing models of Xo(N)/W’'(N) and the j-map

Main obstacle in extending previous computations:
curves of high genus.

We compute:

e diagonalized models of Xp(N),

8 /12



Computing models of Xo(N)/W’'(N) and the j-map

Main obstacle in extending previous computations:
curves of high genus.

We compute:

e diagonalized models of Xp(N),
e Atkin—Lehner quotients Xo(N) — Xo(N)/W'(N),

8 /12



Computing models of Xo(N)/W’'(N) and the j-map

Main obstacle in extending previous computations:
curves of high genus.

We compute:

e diagonalized models of Xp(N),
e Atkin—Lehner quotients Xo(N) — Xo(N)/W'(N),
e j: Xo(N) — P* using g-expansions up to O(g™) with the
(easy to compute) bound
m = (2g — 2)r + 1 + deg(})

and

deg(i) 1 o 1
> 1 2 deg()) NH(HP).

efficiently.
8/ 12



Use finite morphisms Xo(/N) — X
with quadratic points on X known.
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Use finite morphisms
with quadratic points on X known.

More complicated if there are infinitely many quadratic points.
Example (N =2-29)

Najman—Vurokepa: Knowledge of quadratic points on Xy(29)
(hyperelliptic) gives: Quadratic point on Xp(2 - 29) is CM or

corresponds to a of
o with r < g (Chabauty) or
° : only cusps and CM points.

Result: 2°(V) cusps, 7 CM points with j € Q,
1 CM point with CM by —232 defined over Q(+/29).
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Assume Jo(N)(Q) is finite and we know | € Z>1 with
- h(N)(Q) C GCo(N)(Q), the cuspidal divisor class group,
e.g. from bound on Jo(N)(Q)tors from reductions modulo p's.
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Assume Jo(N)(Q) is finite and we know | € Z>1 with
- h(N)(Q) C GCo(N)(Q), the cuspidal divisor class group,
e.g. from bound on Jo(N)(Q)tors from reductions modulo p's.

Note: {quadratic points on X} — X(?)(Q), P — {P, P?}.

For a hypothetical unknown quadratic point
D= Q@+ Q7 € Xo(N)?(Q) do Mordell-Weil sieve:

XO(Q) 5 J(Q)rors — 5 G(N)(Q)

Jred p redp J/l“edp

XO(Fp) —— J(F) — 2 J(F,)

using the Derickx formal immersion criterion.
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The Atkin—Lehner sieve

Assume there is d with J(Q) = (1 4+ wy)J(Q) ® (1 — wy)J(Q)
(up to 2-torsion) with (1 — wy)J(Q) C J(Q)tors-
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The Atkin—Lehner sieve
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The Atkin—Lehner sieve

Assume there is d with J(Q) = (1 + wy)J(Q) & (1 — wy)J(Q)
(up to 2-torsion) with (1 — wy)J(Q) C J(Q)tors-

Let G be with (1 — wg)J(Q) € G C J(Q)rors.
XOQ) —+— JQ) — ™ 4 ¢

jred p Jred B J:redp

XO(F,) —— J(F,) ——" J(F,)

gives all quadratic points not being pullbacks from Xo(N)/wy(Q)
(known e.g. from (quadratic) Chabauty computations) or
fixed points of wy (easy to compute).

11 /12



The Atkin—Lehner sieve

Assume there is d with J(Q) = (1 + wy)J(Q) & (1 — wy)J(Q)
(up to 2-torsion) with (1 — wy)J(Q) C J(Q)tors-

Let G be with (1 — wg)J(Q) € G C J(Q)sors.

XOQ) —+— JQ) — ™ 4 ¢

jred p Jred B Jredp

b 1—w,
X@(Fp) ——— J(Fp) ——— J(Fp)
gives all quadratic points not being pullbacks from Xo(N)/wy(Q)
(known e.g. from (quadratic) Chabauty computations) or
fixed points of wy (easy to compute).

It uses the symmetric Chabauty criterion of Box=Siksek exploiting
rk J(Q) = rk J¥(Q).
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Comparison with other sieves

Advantages:

e Can work with finite group G C J(Q)tors-
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Comparison with other sieves

Advantages:

e Can work with finite group G C J(Q)tors-

e No explicit use of Xo(N)/wy in the sieve.
Disadvantages:

o Need existence of d with rk J(Q) = rk J*4(Q).
e Need generators of G with (1 — wy)J(Q) € G C J(Q)tors-
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Thank you!
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