

Computing quadratic points on $X_0(N)$

Timo Keller joint work with Nikola Adžaga, Philippe Michaud-Jacobs, Filip Najman, Ekin Ozman, and Borna Vukorepa June 22, 2023 Representation Theory XVIII – Number Theory Dubrovnik

Rijksuniversiteit Groningen

Rational points on modular curves

Let E/\mathbb{Q} be an elliptic curve. If $x \in E(\mathbb{Q})_{\text{tors}}$, then the support of $\operatorname{ord}(x)$ is contained in $\{2, 3, 5, 7\}$.

The proof computes the non-cuspidal points in $X_1(p)(\mathbf{Q})$ for all p. $(g(X_1(p)) = 0 \iff p \in \{2, 3, 5, 7\})$

Let E/\mathbf{Q} be an elliptic curve. If $x \in E(\mathbf{Q})_{\text{tors}}$, then the support of ord(x) is contained in $\{2, 3, 5, 7\}$.

The proof computes the non-cuspidal points in $X_1(p)(\mathbf{Q})$ for all p. $(g(X_1(p)) = 0 \iff p \in \{2, 3, 5, 7\})$

Let E/\mathbf{Q} be an elliptic curve. If E has a cyclic *p*-isogeny, then $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$

If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in $X_0(p)({f Q})$ for all p.

Let E/\mathbf{Q} be an elliptic curve. If E has a cyclic *p*-isogeny, then $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$

If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in $X_0(p)(\mathbf{Q})$ for all p.

Irreducibility of mod-*p* Galois representations for example important for:

• Modular Approach to diophantine equations

Let E/\mathbf{Q} be an elliptic curve. If E has a cyclic *p*-isogeny, then $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$

If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in $X_0(p)(\mathbf{Q})$ for all p. Irreducibility of mod-p Galois representations for example important for:

- Modular Approach to diophantine equations
- Iwasawa theory, Euler systems and the Birch–Swinnerton-Dyer conjecture

Let E/\mathbf{Q} be an elliptic curve. If E has a cyclic *p*-isogeny, then $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$

If E is in addition non-CM, then $p \leq 37$.

The proof computes the non-cuspidal points in $X_0(p)(\mathbf{Q})$ for all p. Irreducibility of mod-p Galois representations for example important for:

- Modular Approach to diophantine equations
- Iwasawa theory, Euler systems and the Birch–Swinnerton-Dyer conjecture

Theorem (Merel, Kamienny, Oesterlé) Let K be a number field of degree d. Then $Y_1(p)(K) = \emptyset$ if $p > (3^{d/2} + 1)^2$.

Complete computation of degree *d* points for:

- d = 2: Kamienny
- d = 3: Derickx-Etropolski-van Hoeij-Morrow-Zureick-Brown
- $4 \le d \le 7$: Derickx–Kamienny–Stein–Stoll
- *d* = 8: Derickx–Stoll/Khawaja

Theorem (Merel, Kamienny, Oesterlé) Let K be a number field of degree d. Then $Y_1(p)(K) = \emptyset$ if $p > (3^{d/2} + 1)^2$.

Complete computation of degree d points for:

- d = 2: Kamienny
- *d* = 3: Derickx–Etropolski–van Hoeij–Morrow–Zureick-Brown
- $4 \le d \le 7$: Derickx-Kamienny-Stein-Stoll
- *d* = 8: Derickx–Stoll/Khawaja

Harder: CM point in $X_0(p)(K)$ for p split in K with $h_K = 1$.

Conjecture

If N > C(d), then $X_0(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or N (dim $X^{(d)} = d$).

Harder: CM point in $X_0(p)(K)$ for p split in K with $h_K = 1$.

Conjecture

If N > C(d), then $X_0(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or N (dim $X^{(d)} = d$). Fixed K:

Non-explicit bounds by Momose–Larson–Vaintrob (2014, GRH).

Harder: CM point in $X_0(p)(K)$ for p split in K with $h_K = 1$.

Conjecture

If N > C(d), then $X_0(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or N (dim $X^{(d)} = d$). Fixed K:

Non-explicit bounds by Momose-Larson-Vaintrob (2014, GRH).

Explicit results for certain quadratic K:

- all N = p, h_K ≠ 1, conditional on GRH (Banwait–Derickx 2022)
- all N = p for $K = \mathbb{Q}(\sqrt{d})$ with d = -5, 2, 3, 5, 6, 7 and for semistable E (Michaud-Jacobs 2022)
- all *N* for 19 *K*, conditional on GRH (Banwait–Najman–Padurariu 2022)

Harder: CM point in $X_0(p)(K)$ for p split in K with $h_K = 1$.

Conjecture

If N > C(d), then $X_0(N)(K)$ consists only of cusps and CM points for all K of degree d.

Fix K (infinitely many curves) or N (dim $X^{(d)} = d$). Fixed K:

Non-explicit bounds by Momose-Larson-Vaintrob (2014, GRH).

Explicit results for certain quadratic K:

- all N = p, h_K ≠ 1, conditional on GRH (Banwait–Derickx 2022)
- all N = p for $K = \mathbb{Q}(\sqrt{d})$ with d = -5, 2, 3, 5, 6, 7 and for semistable E (Michaud-Jacobs 2022)
- all *N* for 19 *K*, conditional on GRH (Banwait–Najman–Padurariu 2022)

Quadratic points on $X_0(N)$ of small genus

Problem for describing quadratic points on X of genus ≥ 2 : there can be infinitely many, namely iff X is hyperelliptic or $X \rightarrow E$ with rk $E(\mathbf{Q}) > 0$ (Harris–Silverman).

For the following N, the quadratic points on $X_0(N)$ had previously been computed:

- X₀(N) hyperelliptic, rank 0: Bruin–Najman
- $X_0(N)$ non-hyperelliptic of genus ≤ 5 , rank 0: Ozman–Siksek
- $X_0(N)$ of genus ≤ 5 , rank > 0: Box
- the other bielliptic X₀(N): Najman–Vukorepa
- some other $X_0(N)$: N = 77, 91, 125, 169.

Problem for describing quadratic points on X of genus ≥ 2 : there can be infinitely many, namely iff X is hyperelliptic or $X \rightarrow E$ with rk $E(\mathbf{Q}) > 0$ (Harris–Silverman).

For the following N, the quadratic points on $X_0(N)$ had previously been computed:

- X₀(N) hyperelliptic, rank 0: Bruin-Najman
- $X_0(N)$ non-hyperelliptic of genus \leq 5, rank 0: Ozman–Siksek
- $X_0(N)$ of genus ≤ 5 , rank > 0: Box
- the other bielliptic $X_0(N)$: Najman–Vukorepa
- some other $X_0(N)$: N = 77, 91, 125, 169.

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_0(N)$ by improving state-of-the-art methods:

Theorem

For all $X_0(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime), the (finitely many) quadratic points on $X_0(N)$ are only cusps and CM points, except for N = 103 (g = 8) and a point over $\mathbb{Q}(\sqrt{2885})$.

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_0(N)$ by improving state-of-the-art methods:

Theorem

For all $X_0(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime), the (finitely many) quadratic points on $X_0(N)$ are only cusps and CM points, except for N = 103 (g = 8) and a point over $\mathbf{Q}(\sqrt{2885})$.

Furthermore, for the points we give the

- *j*-invariants,
- (possibly) CM discriminants,
- the action of W(N) on them.

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_0(N)$ by improving state-of-the-art methods:

Theorem

For all $X_0(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime), the (finitely many) quadratic points on $X_0(N)$ are only cusps and CM points, except for N = 103 (g = 8) and a point over $\mathbf{Q}(\sqrt{2885})$.

Furthermore, for the points we give the

- *j*-invariants,
- (possibly) CM discriminants,
- the action of W(N) on them.

Limit: need to compute $J_0(N)({f Q})_{ m tors}$

At an MIT workshop on modular curves (aim: extend the LMFDB) we started to extend these computations to push to highest possible genus of $X_0(N)$ by improving state-of-the-art methods:

Theorem

For all $X_0(N)$ of genus ≤ 8 (N composite) and ≤ 10 (N prime), the (finitely many) quadratic points on $X_0(N)$ are only cusps and CM points, except for N = 103 (g = 8) and a point over $\mathbf{Q}(\sqrt{2885})$.

Furthermore, for the points we give the

- *j*-invariants,
- (possibly) CM discriminants,
- the action of W(N) on them.

Limit: need to compute $J_0(N)(\mathbf{Q})_{\text{tors}}$

.

Example: $X_0(58)$

Point	Field	j-invariant	\mathcal{CM}
P_1	$\mathbb{Q}(\sqrt{-1})$	1728	-4
P_2	$\mathbb{Q}(\sqrt{-1})$	287496	-16
P_3	$\mathbb{Q}(\sqrt{-7})$	-3375	-7
P_4	$\mathbb{Q}(\sqrt{-7})$	16581375	-28
P_5	$\mathbb{Q}(\sqrt{-1})$	1728	-4
P_6	$\mathbb{Q}(\sqrt{29})$	$-56147767009798464000\sqrt{29}+302364978924945672000$	-232
P_7	$\mathbb{Q}(\sqrt{-7})$	-3375	-7
P_8	$\mathbb{Q}(\sqrt{-7})$	-3375	-7

7 / 12

Our methods

Main obstacle in extending previous computations: curves of high genus.

We compute:

• diagonalized models of $X_0(N)$,

Main obstacle in extending previous computations: curves of high genus.

We compute:

- diagonalized models of $X_0(N)$,
- Atkin–Lehner quotients $X_0(N) \rightarrow X_0(N)/W'(N)$,

Main obstacle in extending previous computations: curves of high genus.

We compute:

- diagonalized models of $X_0(N)$,
- Atkin–Lehner quotients $X_0(N) \rightarrow X_0(N)/W'(N)$,
- $j: X_0(N) \to \mathbf{P}^1$ using q-expansions up to $O(q^m)$ with the (easy to compute) bound

$$m = (2g - 2)r + 1 + \deg(j)$$

and

$$r > rac{\deg(j)}{2(g-1)} + rac{1}{2}, \quad \deg(j) = N \prod_{p \mid N} \Big(1 + rac{1}{p}\Big).$$

efficiently.

Main obstacle in extending previous computations: curves of high genus.

We compute:

- diagonalized models of $X_0(N)$,
- Atkin–Lehner quotients $X_0(N) \rightarrow X_0(N)/W'(N)$,
- $j: X_0(N) \to \mathbf{P}^1$ using q-expansions up to $O(q^m)$ with the (easy to compute) bound

$$m = (2g-2)r + 1 + \deg(j)$$

and

$$r > rac{\deg(j)}{2(g-1)} + rac{1}{2}, \quad \deg(j) = N \prod_{p \mid N} \Big(1 + rac{1}{p}\Big).$$

efficiently.

Use finite morphisms $X_0(N) \rightarrow X$ with quadratic points on X known.

More complicated if there are infinitely many quadratic points.

Going down

Use finite morphisms $X_0(N) \rightarrow X$ with quadratic points on X known.

More complicated if there are infinitely many quadratic points.

Example ($N = 2 \cdot 29$)

Najman–Vurokepa: Knowledge of quadratic points on $X_0(29)$ (hyperelliptic) gives: Quadratic point on $X_0(2 \cdot 29)$ is CM or corresponds to a **Q**-point of

- $X_0(2 \cdot 29)/w_{29}$ with r < g (Chabauty) or
- $X_0(2 \cdot 2 \cdot 29)^+$: only cusps and CM points.

Result: $2^{\omega(N)}$ cusps, 7 CM points with $j \in \mathbf{Q}$, 1 CM point with CM by -232 defined over $\mathbf{Q}(\sqrt{29})$

Going down

Use finite morphisms $X_0(N) \rightarrow X$ with quadratic points on X known.

More complicated if there are infinitely many quadratic points.

Example ($N = 2 \cdot 29$)

Najman–Vurokepa: Knowledge of quadratic points on $X_0(29)$ (hyperelliptic) gives: Quadratic point on $X_0(2 \cdot 29)$ is CM or corresponds to a Q-point of

- $X_0(2 \cdot 29)/w_{29}$ with r < g (Chabauty) or
- $X_0(2 \cdot 2 \cdot 29)^+$: only cusps and CM points.

Result: $2^{\omega(N)}$ cusps, 7 CM points with $j \in \mathbf{Q}$, 1 CM point with CM by -232 defined over $\mathbf{Q}(\sqrt{29})$. Assume $J_0(N)(\mathbf{Q})$ is finite and we know $I \in \mathbf{Z}_{\geq 1}$ with $I \cdot J_0(N)(\mathbf{Q}) \subseteq C_0(N)(\mathbf{Q})$, the cuspidal divisor class group, e.g. from bound on $J_0(N)(\mathbf{Q})_{\text{tors}}$ from reductions modulo p's.

Note: {quadratic points on X} $\rightarrow X^{(2)}(\mathbf{Q}), P \mapsto \{P, P^{\sigma}\}.$

Assume $J_0(N)(\mathbf{Q})$ is finite and we know $I \in \mathbf{Z}_{\geq 1}$ with $I \cdot J_0(N)(\mathbf{Q}) \subseteq C_0(N)(\mathbf{Q})$, the cuspidal divisor class group, e.g. from bound on $J_0(N)(\mathbf{Q})_{\text{tors}}$ from reductions modulo p's. Note: {quadratic points on X} $\rightarrow X^{(2)}(\mathbf{Q}), P \mapsto \{P, P^{\sigma}\}.$

 $D = Q + Q^{\sigma} \in X_0(N)^{(2)}(\mathbb{Q})$ do Mordell–Weil sieve:

using the Derickx formal immersion criterion.

Assume $J_0(N)(\mathbf{Q})$ is finite and we know $I \in \mathbf{Z}_{\geq 1}$ with $I \cdot J_0(N)(\mathbf{Q}) \subseteq C_0(N)(\mathbf{Q})$, the cuspidal divisor class group, e.g. from bound on $J_0(N)(\mathbf{Q})_{\text{tors}}$ from reductions modulo p's. Note: {quadratic points on X} $\rightarrow X^{(2)}(\mathbf{Q}), P \mapsto \{P, P^{\sigma}\}.$

For a hypothetical unknown quadratic point $D = Q + Q^{\sigma} \in X_0(N)^{(2)}(\mathbf{Q})$ do Mordell–Weil sieve:

using the Derickx formal immersion criterion.

Assume there is d with $J(\mathbf{Q}) = (1 + w_d)J(\mathbf{Q}) \oplus (1 - w_d)J(\mathbf{Q})$ (up to 2-torsion) with $(1 - w_d)J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text{tors}}$.

Let G be with $(1 - w_d)J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text{tors.}}$

Assume there is d with $J(\mathbf{Q}) = (1 + w_d)J(\mathbf{Q}) \oplus (1 - w_d)J(\mathbf{Q})$ (up to 2-torsion) with $(1 - w_d)J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text{tors}}$.

Let G be with $(1 - w_d)J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text{tors}}$.

gives all quadratic points not being pullbacks from $X_0(N)/w_d(\mathbf{Q})$ (known e.g. from (quadratic) Chabauty computations) or fixed points of w_d (easy to compute).

Assume there is d with $J(\mathbf{Q}) = (1 + w_d)J(\mathbf{Q}) \oplus (1 - w_d)J(\mathbf{Q})$ (up to 2-torsion) with $(1 - w_d)J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text{tors}}$.

Let G be with $(1 - w_d)J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text{tors.}}$

gives all quadratic points not being pullbacks from $X_0(N)/w_d(\mathbf{Q})$ (known e.g. from (quadratic) Chabauty computations) or fixed points of w_d (easy to compute).

It uses the symmetric Chabauty criterion of Box–Siksek exploiting $\operatorname{rk} J(\mathbf{Q}) = \operatorname{rk} J^{w_d}(\mathbf{Q}).$

Assume there is d with $J(\mathbf{Q}) = (1 + w_d)J(\mathbf{Q}) \oplus (1 - w_d)J(\mathbf{Q})$ (up to 2-torsion) with $(1 - w_d)J(\mathbf{Q}) \subseteq J(\mathbf{Q})_{\text{tors}}$.

Let G be with $(1 - w_d)J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{tors}$.

gives all quadratic points not being pullbacks from $X_0(N)/w_d(\mathbf{Q})$ (known e.g. from (quadratic) Chabauty computations) or fixed points of w_d (easy to compute).

It uses the symmetric Chabauty criterion of Box–Siksek exploiting $\operatorname{rk} J(\mathbf{Q}) = \operatorname{rk} J^{w_d}(\mathbf{Q}).$

- Can work with finite group $G \subseteq J(\mathbf{Q})_{\text{tors.}}$
- No explicit use of $X_0(N)/w_d$ in the sieve.

- Can work with finite group $G \subseteq J(\mathbf{Q})_{tors}$.
- No explicit use of $X_0(N)/w_d$ in the sieve.

Disadvantages:

• Need existence of d with $\operatorname{rk} J(\mathbf{Q}) = \operatorname{rk} J^{w_d}(\mathbf{Q})$.

- Can work with finite group $G \subseteq J(\mathbf{Q})_{tors}$.
- No explicit use of $X_0(N)/w_d$ in the sieve.

Disadvantages:

- Need existence of d with $\operatorname{rk} J(\mathbf{Q}) = \operatorname{rk} J^{w_d}(\mathbf{Q})$.
- Need generators of G with $(1 w_d)J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text{tors.}}$

- Can work with finite group $G \subseteq J(\mathbf{Q})_{tors}$.
- No explicit use of $X_0(N)/w_d$ in the sieve.

Disadvantages:

- Need existence of d with $\operatorname{rk} J(\mathbf{Q}) = \operatorname{rk} J^{w_d}(\mathbf{Q})$.
- Need generators of G with $(1 w_d)J(\mathbf{Q}) \subseteq G \subseteq J(\mathbf{Q})_{\text{tors}}$.

Thank you!