

Exakte Verifizierung der starken BSD-Vermutung für einige absolut einfache abelsche Flächen

Timo Keller

mit Michael Stoll

Universität Bayreuth

9. März 2022

Inhalt

Elliptische Kurven

Definition und Gruppenstruktur

Motivation für die und Aussage der BSD-Vermutung

Die L-Funktion und die Rangvermutung

Die Shafarevich-Tate-Gruppe und die starke BSD-Vermutung Stand der Forschung

Stand der Forschung

Probleme und Algorithmen in höherer Dimension

Ein konkretes Beispiel

 $Jac(X_0(39)/w_{13})$ und andere Atkin-Lehner-Quotienten

Ausblick

Eine Herausforderung

Mehr Fälle, Dimension 3 und total reelle Zahlkörper

Elliptische Kurven

Algebraische Geometrie: elliptische Kurven

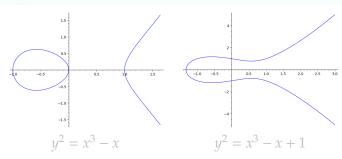
Polynomgleichungssysteme und ihre Nullstellengebilde: (affine) Varietäten

Beispie

Elliptische Kurven gegeben durch Weierstraß-Gleichung

$$E: y^2 = x^3 + Ax + B$$

mit $A, B \in \mathbb{Q}$ so, dass $x^3 + Ax + B$ keine mehrfachen Nullstellen hat.



Algebraische Geometrie: elliptische Kurven

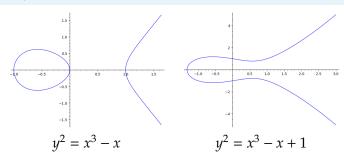
Polynomgleichungssysteme und ihre Nullstellengebilde: (affine) Varietäten

Beispiel

Elliptische Kurven gegeben durch Weierstraß-Gleichung

$$E: y^2 = x^3 + Ax + B$$

mit $A, B \in \mathbf{Q}$ so, dass $x^3 + Ax + B$ keine mehrfachen Nullstellen hat.

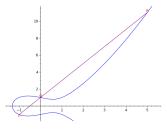


Die Gruppenstruktur

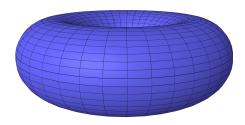
Betrachte eine elliptische Kurve

$$E: y^2 = x^3 + Ax + B.$$

 $E(\mathbf{Q})$: Lösungen mit $x, y \in \mathbf{Q}$ zusammen mit Punkt im Unendlichen. Gruppenstruktur auf $E(\mathbf{Q})$:



$$P + Q + R = 0$$



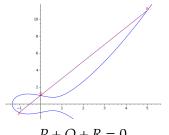
 $E(\mathbf{C}) \cong \mathbf{C}/\Lambda, \Lambda \subset \mathbf{C}$ Gitter

Die Gruppenstruktur

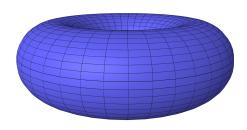
Betrachte eine elliptische Kurve

$$E: y^2 = x^3 + Ax + B.$$

 $E(\mathbf{Q})$: Lösungen mit $x, y \in \mathbf{Q}$ zusammen mit Punkt im Unendlichen. Gruppenstruktur auf $E(\mathbf{Q})$:



$$P + Q + R = 0$$



 $E(\mathbf{C}) \cong \mathbf{C}/\Lambda, \Lambda \subset \mathbf{C}$ Gitter

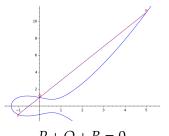
Die abelsche Gruppe $E(\mathbf{Q})$ ist endlich erzeugt: $E(\mathbf{Q}) \cong \mathbf{Z}^r \oplus E(\mathbf{Q})_{tors}$ mit dem Rang $r \geq 0$ und $E(\mathbf{Q})_{tors}$ endlich.

Die Gruppenstruktur

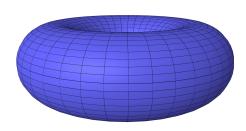
Betrachte eine elliptische Kurve

$$E: y^2 = x^3 + Ax + B.$$

 $E(\mathbf{Q})$: Lösungen mit $x, y \in \mathbf{Q}$ zusammen mit Punkt im Unendlichen. Gruppenstruktur auf $E(\mathbf{Q})$:



$$P + Q + R = 0$$



 $E(\mathbf{C}) \cong \mathbf{C}/\Lambda, \Lambda \subset \mathbf{C}$ Gitter

Satz von Mordell (1922)

Die abelsche Gruppe $E(\mathbf{Q})$ ist endlich erzeugt:

 $E(\mathbf{Q}) \cong \mathbf{Z}^r \oplus E(\mathbf{Q})_{\text{tors}}$ mit dem Rang $r \ge 0$ und $E(\mathbf{Q})_{\text{tors}}$ endlich.

Motivation für die und Aussage der BSD-Vermutung

Die Birch-Swinnerton-Dyer-Vermutung

L-Funktion von E:

$$L(E,s) = \prod_{p \in S_{\rm good}} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} \cdot \prod_{p \in S_{\rm bad}} \frac{1}{1 - a_p p^{-s}}$$

mit $a_p = p + 1 - \#E(\mathbf{F}_p)$ für $p \in S_{good}$ (Spur des p-Frobenius).

Birch-Swinnerton-Dyer-Vermutung

$$r = r_{an} := \operatorname{ord}_{s=1} L(E, s)$$

- Aufgestellt in den 1960er Jahren nach Computerberechnungen.
- ► Gibt "Tag-Nacht-Algorithmus" zur Berechnung von $E(\mathbf{Q})$.
- ▶ Bewiesen, wenn ord_{s=1} $L(E, s) \le 1$.

Die Birch-Swinnerton-Dyer-Vermutung

L-Funktion von E:

$$L(E,s) = \prod_{p \in S_{\text{good}}} \frac{1}{1 - a_p p^{-s} + p^{1-2s}} \cdot \prod_{p \in S_{\text{bad}}} \frac{1}{1 - a_p p^{-s}}$$

mit $a_p = p + 1 - \#E(\mathbf{F}_p)$ für $p \in S_{good}$ (Spur des p-Frobenius).

Birch-Swinnerton-Dyer-Vermutung

$$r = r_{an} := \operatorname{ord}_{s=1} L(E, s)$$

- Aufgestellt in den 1960er Jahren nach Computerberechnungen.
- Gibt "Tag-Nacht-Algorithmus" zur Berechnung von E(Q).
- ▶ Bewiesen, wenn ord_{s=1} $L(E, s) \le 1$.

Die Shafarevich-Tate-Gruppe

Die Shafarevich-Tate-Gruppe

$$III(E/Q) := \ker \left(H^1(\mathbf{Q}, E) \to \bigoplus_v H^1(\mathbf{Q}_v, E) \right)$$

klassifiziert überall lokal triviale E-Torseure.

- ightharpoonup ist Maß für Fehlschlagen des Lokal-global-Prinzips.
- Vermutung: endlich!
- Anwendung: Sei *C* Kurve vom Geschlecht 1. Entscheide: $C(Q) = \emptyset$? $\#C(Q) = \infty$?

Die Shafarevich-Tate-Gruppe

Die Shafarevich-Tate-Gruppe

$$\mathrm{III}(E/\mathbf{Q}) := \ker \left(\mathrm{H}^1(\mathbf{Q}, E) \to \bigoplus_v \mathrm{H}^1(\mathbf{Q}_v, E) \right)$$

klassifiziert überall lokal triviale E-Torseure.

- ightharpoonup III(E/\mathbf{Q}) ist Maß für Fehlschlagen des Lokal-global-Prinzips.
- Vermutung: endlich!
- ► Anwendung: Sei *C* Kurve vom Geschlecht 1. Entscheide: $C(\mathbf{Q}) = \emptyset$? # $C(\mathbf{Q}) = \infty$?

starke BSD-Vermutung

$$\# \coprod (E/\mathbf{Q}) = \# \coprod (E/\mathbf{Q})_{\text{an}} := \frac{(\# E(\mathbf{Q})_{\text{tors}})^2}{\prod_p c_p} \cdot \frac{L^*(E,1)}{\Omega_E \operatorname{Reg}_E}$$

Vergleiche mit der analytischen Klassenzahlformel!

Die Shafarevich-Tate-Gruppe

Die Shafarevich-Tate-Gruppe

$$III(E/Q) := \ker \left(H^1(\mathbf{Q}, E) \to \bigoplus_v H^1(\mathbf{Q}_v, E) \right)$$

klassifiziert überall lokal triviale E-Torseure.

- ightharpoonup III(E/\mathbf{Q}) ist Maß für Fehlschlagen des Lokal-global-Prinzips.
- Vermutung: endlich!
- ► Anwendung: Sei *C* Kurve vom Geschlecht 1. Entscheide: $C(\mathbf{Q}) = \emptyset$? # $C(\mathbf{Q}) = \infty$?

starke BSD-Vermutung

$$\# \coprod (E/\mathbf{Q}) = \# \coprod (E/\mathbf{Q})_{\text{an}} := \frac{(\# E(\mathbf{Q})_{\text{tors}})^2}{\prod_p c_p} \cdot \frac{L^*(E,1)}{\Omega_E \operatorname{Reg}_E}$$

Vergleiche mit der analytischen Klassenzahlformel!

Ein Beispiel für die Shafarevich-Tate-Gruppe

Die Selmer-Kubik

$$3x^3 + 4y^3 + 5z^3 = 0$$

ist ein nichttriviales Element von $\coprod (E/Q)[3]$ mit der elliptischen Kurve

$$E: x^3 + y^3 + 3 \cdot 4 \cdot 5 \cdot z^3 = 0$$

 $mit r = r_{an} = 0.$

Unter Annahme der starken Birch-Swinnerton-Dyer-Vermutung ist

$$\coprod(E/\mathbf{Q})\cong(\mathbf{Z}/3)^2.$$

Ein Beispiel für die Shafarevich-Tate-Gruppe

Die Selmer-Kubik

$$3x^3 + 4y^3 + 5z^3 = 0$$

ist ein nichttriviales Element von $\coprod (E/Q)[3]$ mit der elliptischen Kurve

$$E: x^3 + y^3 + 3 \cdot 4 \cdot 5 \cdot z^3 = 0$$

 $mit r = r_{an} = 0.$

Unter Annahme der starken Birch-Swinnerton-Dyer-Vermutung ist

$$\coprod (E/\mathbf{Q}) \cong (\mathbf{Z}/3)^2.$$

Es gibt Analogon für abelsche Varietäten höherer Dimension!

Kurve vom Geschlecht 2 Hier ist deutlich weniger bekannt!

Stand der Forschung zur (starken) BSD-Vermutung

- Wenn dim A = 1, starke BSD verifiziert für Führer bis 5000.
- ▶ Vor allem Resultate für modulare abelsche Varietäten *A*.
- ▶ Nicht jede abelsche Varietät der Dimension > 1 ist modular.
- ► Aus Gross-Zagier und Kolyvagin-Logachëv kann man für diese $r = r_{an}$ folgern, wenn $r_{an} \le \dim A$. (1980er Jahre)
- ► Außerdem gilt dann $\#III(A/\mathbb{Q})_{an} \in \mathbb{Q}_{>0}$ und $\#III(A/\mathbb{Q}) < \infty$.

Stand der Forschung zur (starken) BSD-Vermutung

- Wenn dim A = 1, starke BSD verifiziert für Führer bis 5000.
- ▶ Vor allem Resultate für modulare abelsche Varietäten *A*.
- ▶ Nicht jede abelsche Varietät der Dimension > 1 ist modular.
- ► Aus Gross-Zagier und Kolyvagin-Logachëv kann man für diese $r = r_{an}$ folgern, wenn $r_{an} \le \dim A$. (1980er Jahre)
- ► Außerdem gilt dann $\# \coprod (A/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$ und $\# \coprod (A/\mathbf{Q}) < \infty$.
- ▶ Offen: $\#III(A/\mathbb{Q}) \stackrel{?}{=} \#III(A/\mathbb{Q})_{an}$ (starke BSD-Vermutung)

Stand der Forschung zur (starken) BSD-Vermutung

- Wenn dim A = 1, starke BSD verifiziert für Führer bis 5000.
- ▶ Vor allem Resultate für modulare abelsche Varietäten A.
- ▶ Nicht jede abelsche Varietät der Dimension > 1 ist modular.
- ► Aus Gross-Zagier und Kolyvagin-Logachëv kann man für diese $r = r_{an}$ folgern, wenn $r_{an} \le \dim A$. (1980er Jahre)
- ▶ Außerdem gilt dann $\#\coprod(A/\mathbf{Q})_{an} \in \mathbf{Q}_{>0}$ und $\#\coprod(A/\mathbf{Q}) < \infty$.
- ► Offen: $\# \coprod (A/\mathbf{Q}) \stackrel{?}{=} \# \coprod (A/\mathbf{Q})_{an}$ (starke BSD-Vermutung)

Probleme, wenn $\dim A > 1$

Was ist nicht verfügbar?

- ▶ Für welche p gibt es p-Isogenien $A \rightarrow A'$?
- Das Eulersystem von Kolyvagin-Logachëv ist nicht explizit.

Starke BSD in Dimension > 1 bisher in keinem einzigen Fall verifiziert, der sich nicht auf Dimension 1 reduzieren lässt!

Ein explizites Eulersystem

Satz (K.): endlicher Träger von III

Sei A eine modulare abelsche Varietät über \mathbf{Q} . Es ist $\coprod (A/\mathbf{Q})[p] = 0$ für alle p mit

- ▶ ρ_p : Gal($\overline{\mathbf{Q}}|\mathbf{Q}$) → Aut($A[p](\overline{\mathbf{Q}})$) irreduzibel und
- ▶ $p \nmid 2 \cdot c \cdot \gcd_K(I_K)$ mit Heegnerindizes I_K und dem Tamagawaprodukt c.

Diese *p* sind explizit berechenbar.

Ein explizites Eulersystem

Satz (K.): endlicher Träger von III

Sei A eine modulare abelsche Varietät über \mathbf{Q} . Es ist $\coprod (A/\mathbf{Q})[p] = 0$ für alle p mit

- ▶ ρ_p : Gal($\overline{\mathbf{Q}}|\mathbf{Q}$) → Aut($A[p](\overline{\mathbf{Q}})$) irreduzibel und
- ▶ $p \nmid 2 \cdot c \cdot \gcd_K(I_K)$ mit Heegnerindizes I_K und dem Tamagawaprodukt c.

Diese *p* sind explizit berechenbar.

Berechnung von $\#III(A/\mathbb{Q})$ und $\#III(A/\mathbb{Q})$ an

Für alle anderen $p \dots$

- 1. ... berechne die *p*-adische *L*-Funktion, oder
- 2. ... mache einen *p*-Abstieg,
- ... um $\coprod (A/\mathbf{Q})[p]$ zu berechnen.

Berechne $\#III(A/Q)_{an}$ mittels modularer Symbole und, wenn $r_{an} = \dim A$, einem Heegnerindex.

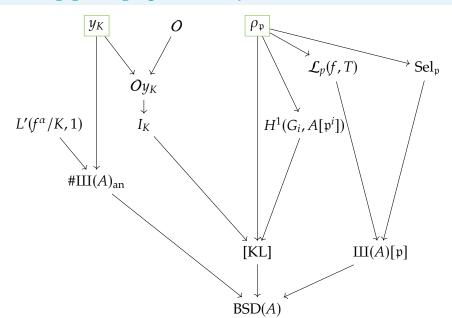
Berechnung von $\#III(A/\mathbb{Q})$ und $\#III(A/\mathbb{Q})$ an

```
Für alle anderen p \dots
```

- 1. ... berechne die *p*-adische *L*-Funktion, oder
- 2. . . . mache einen *p*-Abstieg,
- ... um $\coprod (A/\mathbf{Q})[p]$ zu berechnen.

Berechne $\# \coprod (A/\mathbb{Q})_{an}$ mittels modularer Symbole und, wenn $r_{an} = \dim A$, einem Heegnerindex.

Abhängigkeitsgraph des Projektes



Ein konkretes Beispiel

- $O = \mathbf{Z}[\sqrt{2}]$
- $r = r_{an} = 0$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} = \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- $\rho_{\mathfrak{p}}$ ist reduzibel genau für $\mathfrak{p}=(\sqrt{2})$ und genau ein $\mathfrak{p}\bar{\mathfrak{p}}=7$.
- $\sim c = 7$

- $O = \mathbf{Z}[\sqrt{2}]$
- $r = r_{an} = 0$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{tors} = \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- $\rho_{\mathfrak{p}}$ ist reduzibel genau für $\mathfrak{p}=(\sqrt{2})$ und genau ein $\mathfrak{p}\bar{\mathfrak{p}}=7$.
- c = 7
- ► $Sel_2(A/\mathbb{Q}) \cong (\mathbb{Z}/2)^2 \cong A(\mathbb{Q})[2]$ impliziert $III(A/\mathbb{Q})[2] = 0$.

- $ightharpoonup O = \mathbf{Z}[\sqrt{2}]$
- $r = r_{\rm an} = 0$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} = \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- $\rho_{\mathfrak{p}}$ ist reduzibel genau für $\mathfrak{p}=(\sqrt{2})$ und genau ein $\mathfrak{p}\bar{\mathfrak{p}}=7$.
- ightharpoonup c = 7
- ► $Sel_2(A/\mathbb{Q}) \cong (\mathbb{Z}/2)^2 \cong A(\mathbb{Q})[2]$ impliziert $III(A/\mathbb{Q})[2] = 0$.
- $\qquad \text{[KL] mit } I_{\mathbf{Q}(\sqrt{-23})} = \text{7 impliziert } \# \mathbb{H} \mathbb{H}(A/\mathbf{Q})[\mathfrak{p}] = 0 \text{ für } \mathfrak{p} \nmid (\sqrt{2}), \text{7}.$
- $# \coprod (A/\mathbf{Q})_{an} = 1$

- $ightharpoonup O = \mathbf{Z} \left[\sqrt{2} \right]$
- $r = r_{an} = 0$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} = \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- $\rho_{\mathfrak{p}}$ ist reduzibel genau für $\mathfrak{p}=(\sqrt{2})$ und genau ein $\mathfrak{p}\bar{\mathfrak{p}}=7$.
- ightharpoonup c = 7
- ► $Sel_2(A/\mathbb{Q}) \cong (\mathbb{Z}/2)^2 \cong A(\mathbb{Q})[2]$ impliziert $III(A/\mathbb{Q})[2] = 0$.
- ► [KL] mit $I_{\mathbf{Q}(\sqrt{-23})} = 7$ impliziert # $\mathrm{III}(A/\mathbf{Q})[\mathfrak{p}] = 0$ für $\mathfrak{p} \nmid (\sqrt{2}), 7$.
- \blacktriangleright # \coprod (A/\mathbf{Q})_{an} = 1
- $\triangleright \rho_{\mathfrak{p}}$ ist reduzibel mit

$$0 \to \mathbb{Z}/7 \to A[\mathfrak{p}] \to \mu_7 \to 1$$

nicht-zerfallend exakt, und $Sel_p(A/\mathbb{Q}) \cong \mathbb{Z}/7 \cong A(\mathbb{Q})[7]$ folgt mit p-Abstieg.

- $O = \mathbf{Z}[\sqrt{2}]$
- $r = r_{an} = 0$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{\text{tors}} = \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- $\rho_{\mathfrak{p}}$ ist reduzibel genau für $\mathfrak{p}=(\sqrt{2})$ und genau ein $\mathfrak{p}\bar{\mathfrak{p}}=7$.
- ightharpoonup c = 7
- ► $Sel_2(A/\mathbb{Q}) \cong (\mathbb{Z}/2)^2 \cong A(\mathbb{Q})[2]$ impliziert $\coprod (A/\mathbb{Q})[2] = 0$.
- ► [KL] mit $I_{\mathbf{Q}(\sqrt{-23})} = 7$ impliziert #Ш $(A/\mathbf{Q})[\mathfrak{p}] = 0$ für $\mathfrak{p} \nmid (\sqrt{2}), 7$.
- $# \coprod (A/\mathbf{Q})_{an} = 1$
- $\triangleright \rho_{\mathfrak{p}}$ ist reduzibel mit

$$0 \to \mathbf{Z}/7 \to A[\mathfrak{p}] \to \mu_7 \to 1$$

nicht-zerfallend exakt, und $Sel_p(A/\mathbf{Q}) \cong \mathbf{Z}/7 \cong A(\mathbf{Q})[7]$ folgt mit p-Abstieg.

Die $\bar{\mathfrak{p}}$ -adische L-Funktion hat konstanten Term eine Einheit in $O_{\bar{\mathfrak{p}}}=\mathbb{Z}_7$, also zeigt die integrale GL_2 -IMC $\mathrm{III}(A/\mathbb{Q})[\bar{\mathfrak{p}}]=0$, weil $\rho_{\bar{\mathfrak{p}}}$ irreduzibel ist.

- $O = \mathbf{Z}[\sqrt{2}]$
- $r = r_{an} = 0$
- $A(\mathbf{Q}) = A(\mathbf{Q})_{tors} = \mathbf{Z}/2 \times \mathbf{Z}/(2 \cdot 7)$
- $\rho_{\mathfrak{p}}$ ist reduzibel genau für $\mathfrak{p}=(\sqrt{2})$ und genau ein $\mathfrak{p}\bar{\mathfrak{p}}=7$.
- ightharpoonup c = 7
- ► $Sel_2(A/\mathbb{Q}) \cong (\mathbb{Z}/2)^2 \cong A(\mathbb{Q})[2]$ impliziert $III(A/\mathbb{Q})[2] = 0$.
- ► [KL] mit $I_{\mathbf{Q}(\sqrt{-23})} = 7$ impliziert #Ш $(A/\mathbf{Q})[\mathfrak{p}] = 0$ für $\mathfrak{p} \nmid (\sqrt{2}), 7$.
- \blacktriangleright # \coprod (A/\mathbf{Q}) $_{an} = 1$
- $\triangleright \rho_{\mathfrak{p}}$ ist reduzibel mit

$$0 \to \mathbf{Z}/7 \to A[\mathfrak{p}] \to \mu_7 \to 1$$

nicht-zerfallend exakt, und $Sel_{\mathfrak{p}}(A/\mathbf{Q}) \cong \mathbf{Z}/7 \cong A(\mathbf{Q})[7]$ folgt mit \mathfrak{p} -Abstieg.

▶ Die $\bar{\mathfrak{p}}$ -adische L-Funktion hat konstanten Term eine Einheit in $O_{\bar{\mathfrak{p}}} = \mathbf{Z}_7$, also zeigt die integrale GL_2 -IMC $\mathrm{III}(A/\mathbf{Q})[\bar{\mathfrak{p}}] = 0$, weil $\rho_{\bar{\mathfrak{p}}}$ irreduzibel ist.

Alle Atkin-Lehner-Quotienten von unserem Typ (I)

X	r	0	#∭ _{an}	$\rho_{\mathfrak{p}}$ red.	С	(D,I_D)	#Ш
$X_0(23)$	0	$\sqrt{5}$	1	111	11	(-7, 11)	11 ⁰
$X_0(29)$	0	$\sqrt{2}$	1	7 ₁	7	(-7, 7)	7 ⁰
$X_0(31)$	0	$\sqrt{5}$	1	$\sqrt{5}$	5	(-11, 5)	50
$X_0(35)/w_7$	0	$\sqrt{17}$	1	21	1	(-19, 1)	1
$X_0(39)/w_{13}$	0	$\sqrt{2}$	1	$\sqrt{2}$, 7_1	7	(-23, 7)	7 ⁰
$X_0(67)^+$	2	$\sqrt{5}$	1		1	(-7,1)	1
$X_0(73)^+$	2	$\sqrt{5}$	1		1	(-19, 1)	1
$X_0(85)^*$	2	$\sqrt{2}$	1	$\sqrt{2}$	1	(-19, 1)	1
$X_0(87)/w_{29}$	0	$\sqrt{5}$	1	$\sqrt{5}$	5	(-23, 5)	5^{0}
$X_0(93)^*$	2	$\sqrt{5}$	1		1	(-11, 1)	1
$X_0(103)^+$	2	$\sqrt{5}$	1		1	(-11, 1)	1
$X_0(107)^+$	2	$\sqrt{5}$	1		1	(-7,1)	1
$X_0(115)^*$	2	$\sqrt{5}$	1		1	(-11, 1)	1
$X_0(125)^+$	2	$\sqrt{5}$	1	$\sqrt{5}$	1	(-11, 1)	50

Alle Atkin-Lehner-Quotienten von unserem Typ (II)

X	r	0	$\# \coprod_{an}$	$\rho_{\mathfrak{p}}$ red.	С	(D,I_D)	#Ш
$X_0(133)^*$	2	$\sqrt{5}$	1		1	(-31, 1)	1
$X_0(147)^*$	2	$\sqrt{2}$	1	$\sqrt{2}$, 7_1	1	(-47, 1)	7 0
$X_0(161)^*$	2	$\sqrt{5}$	1		1	(-19, 1)	1
$X_0(165)^*$	2	$\sqrt{2}$	1	$\sqrt{2}$	1	(-131, 1)	1
$X_0(167)^+$	2	$\sqrt{5}$	1		1	(-15, 1)	1
$X_0(177)^*$	2	$\sqrt{5}$	1		1	(-11, 1)	1
$X_0(191)^+$	2	$\sqrt{5}$	1		1	(-7,1)	1
$X_0(205)^*$	2	$\sqrt{5}$	1		1	(-31, 1)	1
$X_0(209)^*$	2	$\sqrt{2}$	1		1	(-51, 1)	1
$X_0(213)^*$	2	$\sqrt{5}$	1		1	(-11, 1)	1
$X_0(221)^*$	2	$\sqrt{5}$	1		1	(-35, 1)	1
$X_0(287)^*$	2	$\sqrt{5}$	1		1	(-31, 1)	1
$X_0(299)^*$	2	$\sqrt{5}$	1		1	(-43, 1)	1
$X_0(357)^*$	2	$\sqrt{2}$	1		1	(-47, 1)	1

Ausblick

Herausforderung

Finde mittels Shnidman-Weiss¹ Beispiele von A/\mathbf{Q} mit

$$\# \coprod (A/\mathbf{Q}) = \# \coprod (A/\mathbf{Q})_{an} \neq 2^{i}!$$

¹Elements of prime order in Tate-Shafarevich groups of abelian varieties over ℚ, arXiv: 2106.14096

Ausblick Zukünftige Arbeit

- Verifikation für alle ~ 1200 Neuformen von Stufe ≤ 1000 mit reell-quadratischen Koeffizienten absehbar.
- ▶ Dimension 3: Eine generische Kurve vom Geschlecht 3 ist nicht hyperelliptisch, also brauchen wir eine explizite Theorie von Jacobischen und Höhen!
- ► Starke BSD-Vermutung über total reellen Zahlkörpern.

Ausblick Zukünftige Arbeit

- Verifikation für alle ~ 1200 Neuformen von Stufe ≤ 1000 mit reell-quadratischen Koeffizienten absehbar.
- Dimension 3: Eine generische Kurve vom Geschlecht 3 ist nicht hyperelliptisch, also brauchen wir eine explizite Theorie von Jacobischen und Höhen!
- Starke BSD-Vermutung über total reellen Zahlkörpern.

Danke!

Mehr Details im nächsten Computeralgebra-Rundbrief.